Participants

Z. Teresa Amar
University of Washington
Quantitative Ecology and Resource Management
Box 355020, SAFS
Seattle WA 98195-5020
zta@u.washington.edu

Alexander Buslov
Kamchatka Research Inst. of Fisheries and Oceanography
Laboratory of Commercial Marine Fishes
18 Naberezhnaya St. Petropavlovsk-Kamchatskiy 683602 Russia
buslov@kamniro.ru

Mike Canino
University of Washington
School of Fishery and Aquatic Sciences
3707 Brooklyn Ave. NE
Seattle WA 98105
mcanino@u.washington.edu

Wayne Donaldson
Alaska Dept. of Fish and Game
Commercial Fisheries Division
211 Mission Rd.
Kodiak AK 99615
wayne_donaldson@fishgame.state.ak.us

Jim Cannon
Sustainable Fisheries Partnership
1600 S. Joyce St., Apt. 919 TAN
Arlington VA 22202
jim.cannon@ecothentic.com

Martin W. Dorn
NOAA Fisheries
Alaska Fisheries Science Center
7600 Sand Point Way NE Bldg. 4
Seattle WA 98115-0070
Martin.Dorn@noaa.gov

Ken Drinkwater
Institute of Marine Research and Bjerknes Centre for Climate Research
Box 1870 Nordnes
N-5817 Bergen
Norway
ken.drinkwater@imr.no

Margit Eero
Danish Institute for Fisheries Research
Charlottenlund Castle
Charlottenlund DK-2920
Denmark
mee@dfu.min.dk

Robert Foy
University of Alaska Fairbanks
Fishery Industrial Technology Center
118 Trident Way
Kodiak AK 99615
foy@sfos.uaf.edu

Susan B. Fudge
Memorial University of Newfoundland
Fisheries and Marine Institute
PO Box 4920
St. John's NL A1C 5R3
Canada
susan.fudge@mi.mun.ca

Tom Gemmell
Marine Conservation Alliance
PO Box 20676
Juneau AK 99802
tomgemmellmca@ak.net

Alfred Cook
World Wildlife Fund
406 G. Street, Suite 303
Anchorage AK 99501
bubba.cook@wwfus.org

Kristy Despars
Aleut Enterprise LLC
840 K Street, Suite 202
Anchorage AK 99501
kdespars@adakisland.com
Participants

Lei Guo
University of Alaska Fairbanks
Fishery Industrial Technology Center
118 Trident Way
Kodiak AK 99615
guo@sfos.uaf.edu

Shannon Hanna
University of Alaska Fairbanks
Fishery Industrial Technology Center
118 Trident Way
Kodiak AK 99615
fnskh@uaf.edu

Lorenz Hauser
University of Washington
School of Aquatic and Fishery Sciences
PO Box 350020
Seattle WA 98195-5020
lhauser@u.washington.edu

Nicola Hillgruber
University of Alaska Fairbanks
Juneau Center, School of Fisheries and Ocean Sciences
11120 Glacier Hwy.
Juneau AK 99801
n.hillgruber@uaf.edu

Lee Hulbert
Alaska Dept. of Fish and Game
Commercial Fisheries Division
PO Box 115526
Juneau AK 99811-5526
Lee_Hulbert@fishgame.state.ak.us

James N. Ianelli
NOAA Fisheries
Alaska Fisheries Science Center, REFMDiv.
7600 Sand Point Way NE, Bldg. 4
Seattle WA 98115-6349
jim.ianelli@noaa.gov

Thomas C. Kline Jr.
Prince William Sound Science Center
PO Box 705
Cordova AK 99574
tkline@pwssc.gen.ak.us

Gordon Kruse
University of Alaska Fairbanks
Juneau Center, School of Fisheries and Ocean Sciences
11120 Glacier Hwy.
Juneau AK 99801-8677
Gordon.Kruse@uaf.edu

George Lilly
Department of Fisheries and Oceans
NW Atlantic Fisheries Centre
PO Box 5667
St. John's NL A1C 5X1
Canada
lillyg@dfo-mpo.gc.ca

Jason Link
NOAA Fisheries
Northeast Fisheries Science Center
166 Water St.
Woods Hole MA 02543
Jason.Link@noaa.gov

Mary Livingston
Ministry of Fisheries, New Zealand
9 Paisley Tce. Karori
Wellington
New Zealand
mary.livingston@fish.govt.nz

Elizabeth A. Logerwell
NOAA Fisheries
Alaska Fisheries Science Center
7600 Sand Point Way NE, F/AKC2
Seattle WA 98115-6349
libby.logerwell@noaa.gov

Joel A. Markis
University of Alaska Fairbanks
School of Fisheries and Ocean Sciences
PO Box 3191
Homer AK 99603
markis@sfos.uaf.edu

Steven J.D. Martell
University of British Columbia
Fisheries Centre
2202 Main Mall
Vancouver BC V6T 1Z4
Canada
martell.steve@gmail.com

Lynn Mattes
Alaska Dept. of Fish and Game
211 Mission Rd.
Kodiak AK 99615
lynn_mattes@fishgame.state.ak.us

Krista Milani
Alaska Dept. of Fish and Game
PO Box 920587
Dutch Harbor AK 99692
krista_milani@fishgame.state.ak.us

Sara E. Miller
University of Alaska Fairbanks
Juneau Center, School of Fisheries and Ocean Sciences
11120 Glacier Hwy.
Juneau AK 99801
fssem1@uaf.edu

Kristen M. Munk
Alaska Dept. of Fish and Game
Age Determination Unit
PO Box 25526
Juneau AK 99802-5526
kristen_munk@fishgame.state.ak.us
Odd Nakken
Institute of Marine Research
Postboks 1870 Nordnes
5024 Bergen
Norway
odd.nakken@imr.no

Sandi Neidetcher
NOAA Fisheries
Alaska Fisheries Science Center
7600 Sand Point Way NE
Seattle WA 98115
sandi.neidetcher@noaa.gov

Anna B. Neuheimer
Dalhousie University
Department of Oceanography
1355 Oxford St.
Halifax NS B3H 4J1
Canada
anna.neuheimer@phys.ocean.dal.ca

Brenda Norcross
University of Alaska Fairbanks
Institute of Marine Science
PO Box 757220
Fairbanks AK 99775-7220
norcross@ims.uaf.edu

Shannon G. Obradovich
Memorial University of Newfoundland
Fisheries and Marine Institute
PO Box 4920
St. John’s NL A1C 5R3
Canada
shannon.obradovich@mi.mun.ca

Padraic O’Flaherty
Lotek Wireless, Inc.
114 Cabot St.
St. John’s NL A1C 3E6
Canada
poflaherty@lotek.com

Olav A. Ormseth
University of Alaska Fairbanks
School of Fisheries and Ocean Sciences
PO Box 757220
Fairbanks AK 99775-7220
olav@sfos.uaf.edu

Maris Plikshs
Latvian Fish Resources Agency (LATFRA)
Daugavgrivas 8
Riga LV1048
Latvia
maris.plikss@latzra.lv

Jim Prince
F/V Muir Milach
220 Lincoln
Port Townsend WA 98368

Edward Richardson
At-Sea Processors Association
4039 21st Avenue, W. Suite 400
Seattle WA 98199
erichardson@atsea.org

George A. Rose
Memorial University of Newfoundland
Fisheries and Marine Institute
PO Box 4920
St. John’s NF A1C 5R3
Canada
grose@mi.mun.ca

Nick Sagalkin
Alaska Dept. of Fish and Game
211 Mission Rd.
Kodiak AK 99615
nick_sagalkin@fishgame.state.ak.us

Herman Savikko
Alaska Dept. of Fish and Game
PO Box 115526
Juneau AK 99811-5526
herman_savikko@fishgame.state.ak.us

Iluhi Schimetka
University of Alaska Fairbanks
Juneau Center, School of Fisheries and Ocean Sciences
11120 Glacier Hwy.
Juneau AK 99801
h.shen@uaf.edu

Haixue Shen
University of Alaska Fairbanks
Juneau Center, School of Fisheries and Ocean Sciences
11120 Glacier Hwy.
Juneau AK 99801
h.shen@uaf.edu

Kally Spalinger
Alaska Dept. of Fish and Game
211 Mission Rd.
Kodiak AK 99615
kally_spalinger@fishgame.state.ak.us

Jennifer Stahl
Alaska Dept. of Fish and Game
Division of Commercial Fisheries
PO Box 110024
Juneau AK 99811-0024
jennifer_stahl@fishgame.state.ak.us

Sarah Stienessen
NOAA Fisheries
Alaska Fisheries Science Center
7600 Sand Point Way NE
Seattle WA 98115
sarah.stienessen@noaa.gov
Participants

Richard E. Thorne
Prince William Sound Science Center
PO Box 705
Cordova AK 99574
thorne@pwssc.gen.ak.us

Michael Trussell
University of Alaska Fairbanks
Fishery Industrial Technology Center
118 Trident Way
Kodiak AK 99615
fnmjt@uaf.edu

Dan Urban
Alaska Dept. of Fish and Game
211 Mission Rd.
Kodiak AK 99615
danUrban@fishgame.state.ak.us

Paul Walline
NOAA Fisheries
Alaska Fisheries Science Center
7600 Sand Point Way NE, Bldg. 4
Seattle WA 98115-0070
paul.walline@noaa.gov

Brad Warren
Warren & Co. Publishing
440 NW 100th Place
Seattle WA 98177
wordworks9@earthlink.net

Vidar Wespestad
Pacific Whiting Conservation Cooperative
21231 8th Place W.
Lynnwood WA 98036
vidarw@verizon.net

Andreas Winter
University of Alaska Fairbanks
Fishery Industrial Technology Center
118 Trident Way
Kodiak AK 99615
ffagw@uaf.edu
Index

A
abiotic factors, 154, 222
acceptable biological catch (ABC), 317, 318, 321, 323-324, 325, 328, 333, 334, 335. See also fisheries management
acoustic surveys. See hydroacoustics
ADFG. See Alaska Department of Fish and Game (ADFG)
AFSC. See Alaska Fisheries Science Center (AFSC)
age, 161-178, 206
age 0 Theragra chalcogramma, 251, 252-253, 265
and age 0 herring, 258-260, 300
and aggregation height, 281
carbon and nitrogen stable isotope data, 255
age-at-maturity, 43, 52-53, 75, 97, 103-104, 179-180, 190
age-dependent linear regression of length-at-age, 113, 116-119
age diversity, 49-50
age-specific migration of Theragra chalcogramma in an age-structured model, 161-178
and aggregation depths, 278, 280, 281-282, 284
catch-at-age, 35, 90, 161, 164, 165, 168, 170
effect of fisheries on age structure, 103-104
on mean age and age diversity, 49-50
fecundity-age relations of Gadus morhua, 184-186, 187, 188, 189, 216
length-at-age of Gadus morhua, 30, 32, 101-103
of Melanogrammus aeglefinus, 112, 113, 116-119, 121, 144, 145, 146, 148, 149, 155
size-at-age of Gadus morhua, 51-52, 75, 104, 179, 192
age (continued)
size-at-age (continued)
of Melanogrammus aeglefinus, 111-124, 144, 145, 146-147, 149, 153, 154-155, 156, 158
weight-at-age of Gadus morhua, 30, 33, 36, 51-52, 58, 73, 101, 104
of Melanogrammus aeglefinus, 144, 157
of Theragra chalcogramma, 163, 337
aggregation structure of Theragra chalcogramma
adults in Prince William Sound, 291
aggregation depth, 276, 278, 280, 281-282, 284
aggregation height, 271, 278, 280, 281, 282
juveniles in the Gulf of Alaska, 271-287
AIC. See Akaike Information Criterion (AIC)
air temperatures around West Greenland, 92-93
Akaike Information Criterion (AIC), 150-151, 154-155
Alaska, 15. See also Unimak Island, Alaska Shelikof Strait, 15
Alaska Department of Fish and Game (ADFG), 290, 307, 346
Alaska Fisheries Science Center (AFSC), 126-127, 308
algae, 309
A'mar, Z. Teresa, 317-346
ambient light and distribution of Theragra chalcogramma aggregations, 272, 283
Ammodytes hexapterus, 253
ANCOVA (analysis of covariance), 116, 117, 183, 185, 256, 263, 308, 310
ANOVA (analysis of variance), 13, 149, 151, 185, 208, 255, 259, 260
Arctic Fisheries Working Group, 29
arcto-boreal ecosystems, 42
Atheresthes stomias (arrowtooth flounder), 283
Atlantic cod. *See Gadus morhua*

Atlantic Ocean. *See also* Northwest Atlantic Fisheries Organization (NAFO) divisions
decline and recovery throughout the North Atlantic, 39-66 fluctuations of Northeast arctic cod catches, 25-38, 41
North Atlantic Drift, 42
North Atlantic Oscillation (NAO), 50, 76 relationship of recruitment and temperature for, 57
commercial fish stocks, 221-237 warming of North Atlantic, 50

Atlantic salmon. *See Salmo salar*

atresia of oocytes, 2-3, 11, 12, 16, 21, 23, 188
Avalon Peninsula, 211

B

Baltic herring. *See Clupea harengus membras*

Baltic Sea ecosystem, 26, 41, 42, 43, 46, 51, 54, 55

fecundity of *Gadus morhua* in, 179, 184, 186, 191

Barents Sea

and *Gadus morhua*, 25-38, 40, 41, 42, 45, 51, 83, 186

inflow of warm Atlantic water into, 50

Bar Haven, 197, 198

Gadus morhua spawning grounds, 199, 200, 201, 202, 203-215

Barnabas Trough, 126, 273, 275, 283

bathypelagic water temperature, 116, 119, 122

Bayesian analysis, 166, 322, 336, 344-345

Bedford Institute of Oceanography, 113

Bering Sea. *See Eastern Bering Sea (EBS)*

Beverton-Holt stock-recruitment model, 202, 212, 226, 330, 332, 333, 334, 335

biomass data. *See also* spawning, spawning stock biomass (SSB)

biotic factors affecting stock biomass, 54-56

from bottom-trawl surveys, 70

effect of fisheries on stock biomass, 46-50

for *Gadus morhua*, 29-30, 35, 40

changes in, 43-50, 51-52, 89, 97-98, 101-103

as a key to ecosystem function, 300-301

biomass data (continued)

for *Melanogrammus aeglefinus*, Georges Bank consumption estimates, 148-149, 150, 151-153

for *Theragra chalcogramma*, 171, 172, 173, 295

compared with *Clupea pallasii*, 293-294, 298

biotic factors affecting stock, 54-56, 76, 82, 154, 222

bluefin tuna. *See Thunnus maccoyii*

Bonavista Corridor, 77, 180, 183, 187, 189

Bradbury, I.R., 197-219

Brander, Keith, 39-66

Brodziak, Jon K.T., 141-160

Buck, C.L., 239-250

bycatch rates, 49, 58, 69, 71, 80, 106, 107, 323

C

calanoid copepods, 252. *See also* copepods
cannibalism, 33, 55

capelin. *See Mallotus villosus*
carbon isotope values, 251, 252, 255-257, 258-259, 262, 263, 264, 265

Cardinale, Massimiliano, 221-237

“carpet” aggregations, 272

Carscadden, James E., 39-66

Casini, Michele, 221-237

catch statistics. *See also* harvest control rate

acceptable biological catch (ABC), 317, 318, 319, 321, 323-324, 325, 328, 333, 334, 335

bycatch rates, 49, 58, 69, 71, 80, 106, 107, 323

catchability coefficient, 169, 322

catch-at-age, 35, 90, 161, 164, 165, 168, 170

for *Gadus morhua*, 70-71

fluctuations of in North Atlantic, 39-66

fluctuations of in West Greenland waters, 90-91, 96-97

fluctuations of Northeast arctic cod catches, 25-38

for *Melanogrammus aeglefinus*, 145

for *Theragra chalcogramma*, 137, 172

catch-at-age data, 161, 170

Celtic Sea

and *Clupea harengus*, 233

and *Gadus morhua*, 26, 41, 42, 43, 45

center of gravity, change in, 97

Chiniak Trough, 274, 275, 278
chinook salmon. See *Oncorhynchus tshawytscha*

Chionoecetes bairdi, 309, 310, 311

Chouinard, Ghislain A., 39-66

chum salmon. See *Oncorhynchus keta*

climate effects. See also temperature; water temperature

effects of climate changes on zooplankton population, 267

and *Gadus macrocephalus*, 305-306

and *Gadus morhua*, 25, 30, 36, 46, 49, 50, 58, 68, 82-83, 90, 92-93, 100, 103, 192

on the marine ecosystem, 221-222, 226, 230, 234, 235, 267, 305-306

and *Theragra chalcogramma*, 265, 337

Clupea harengus membras, 174

relation of recruitment data in relation to stock biomass and temperature, 221-237

Clupea pallasii, 241, 252, 289, 290-291, 292, 310

biomass data compared with *Theragra chalcogramma*, 293-294, 298

as prey of *Eumetopias jubatus*, 299-300

stable isotope analysis of, 251

Theragra chalcogramma as predator of juveniles, 300, 301

clusters, 126, 130-131, 132-133, 134, 135, 137-138

cod. See *Gadus macrocephalus* (Pacific cod); *Gadus morhua* (Atlantic cod)

coho salmon. See *Oncorhynchus kisutch*

consumption. See food supply

copepods, 30, 266, 298, 300, 301

calanoid copepods, 252

Neocalanus cristatus, 257-258, 292

cortisol, 239, 240, 241, 243, 244, 246-247, 248

courtship behavior of *Gadus morhua*, 204-205

crab. See *Chionoecetes bairdi* (Tanner crab); *Paralithodes camtschaticus* (red king crab)

cutthroat trout. See *Oncorhynchus clarki clarki*

D

daan, Niels, 39-66

decision rule in MSE, 317, 318, 321, 322, 323, 324, 325, 335, 336

"Tier 3 NPFMC decision rule," 319, 320

decline of stock, 320

of *Gadus macrocephalus*, 306

decline of stock (continued)

of *Gadus morhua*, 29, 30, 33, 35, 180, 189-190, 198, 199, 208, 215, 217

in the Northern Atlantic, 39-66

off Labrador and Eastern Newfoundland, 67-88

in West Greenland waters, 89-110

of *Melanogrammus aeglefinus*, 111, 116, 119, 121-122, 143, 144, 152

of predators, 135, 272, 294

of *Theragra chalcogramma*, 135, 162, 324, 330-331, 333, 334

demersal fish, 76, 80, 157, 202, 210, 272, 283, 290

demersal gadoids compared with pelagic clupeids, 221-237

density-dependent processes

density-dependent growth of *Melanogrammus aeglefinus* on the Georges Bank, 141-160

and dispersal of *Gadus morhua*, 211

deyoung, B., 197-219

diet and food chains. See food supply

dispersal, juvenile, 211

distribution of *Gadus morhua*, 25-26, 27

diversity, age, 49-50

dorn, Martin W., 125-140, 317-346

drinkwater, Kenneth F., 39-66

E

Eastern Bering Sea (EBS), 252, 272, 290, 298, 299

age-specific migration of *Theragra chalcogramma*, 161-178

effects of fishing on school characteristics of *Theragra chalcogramma*, 125-140

ovarian stages of *Theragra chalcogramma*, 1-23

East Kodiak, Alaska

and *Gadus macrocephalus*, 307, 313

and *Theragra chalcogramma*, 136, 271, 273, 274-275, 277, 278, 279, 280, 282, 283-284

eating. See food supply

EBS. See Eastern Bering Sea ecosystem

echo-integration midwater trawl surveys (EMT), 290, 291

echo-integration trawl surveys (EIT), 126-127, 162, 164, 166, 169, 170, 172, 273-274, 322, 329, 343, 346

echoview software, 127-128, 275, 276

ECOPATH (food web trophic model), 306
ecosystems
 trophic level as an ecosystem indicator, 306
 use of MSE for managing ecosystems, 318
eggs
 atresia of oocytes, 2-3, 11, 12, 16, 21, 188
 of Gadus morhua. See also fecundity and Gadus morhua
 annual egg production and length, 209
 changes in fecundity in a stressed population off Newfoundland, 179-196
 comparison of eggs, larval, and juvenile populations, 199
 egg and larval surveys, 202
 egg potential, 197-198, 200-202, 205, 208, 210, 212-214, 216, 217
 rebuilding spawning grounds in coastal Newfoundland, 210-211
 of Theragra chalcogramma
 analysis of maturity stages, 5-11
 egg production estimates, 343
 stages of, 1, 2
EIT surveys. See echo-integration trawl surveys (EIT)
EMT. See echo-integration midwater trawl surveys (EMT)
Enberg, Katja, 39-66
Endangered Species Act, 126
environmental factors and Gadus morhua, 82-84
 emergence and decline in West Greenland waters, 89-110
enzymatic assay kits, 243
Eumetopias jubatus, 126, 135, 290-291, 292, 294, 295, 299-300, 301, 319
exercise
 effects of temperature on Gadus macrocephalus recovery, 239-250
 exercise to exhaustion, 239, 240, 246, 247
 Exxon Valdez oil spill (EVOS), 290, 294
 Exxon Valdez Oil Spill Trustee Council, 300

F
 FAO Code of Conduct for Responsible Fisheries (UN), 319
 fecundity and Gadus morhua, 197, 200, 201, 210, 211, 213, 216. See also eggs of Gadus morhua
 changes in fecundity in a stressed population off Newfoundland, 179-196
 fecundity-age relations of, 184-186, 187, 188, 189, 216
 Fisher exact test, 228, 229
 fisheries management. See also acceptable biological catch (ABC); decline of stock; total allowable catch (TAC)
 bycatch rates, 49, 58, 69, 71, 80, 106, 107, 323
 fishery selectivity, 342
 fishing moratoriums, 49, 68, 70-71, 73, 82, 83, 188
 fishing mortality rates, 29-30, 47-48, 73-75, 80-82, 91, 234
 equation for fishing mortality using operating model in MSE, 342
 overfishing, 46, 55, 67, 76, 143, 216, 319, 320, 324, 325, 332, 333
 target level of fishing mortality, 319
 and Gadus morhua, 78-82
 effect of fisheries on age structure, 103-104
 effect on stock, 46-50, 58, 69-71, 89-110, 234
 inshore fishery, 70, 71, 73, 76, 78, 79, 81-82, 95, 96
 seasonal fisheries and fishing mortality, 215, 216
 and Melanogrammus aeglefinus on the Georges Bank, 143
 shrimp fisheries, 80
 and Theragra chalcogramma
 in the Eastern Bering Sea, 162-163, 174-175
 management strategy evaluation approach and fishery in Gulf of Alaska, 317-346
 management strategy evaluation approach in the Gulf of Alaska, 317-346
 in Prince William Sound, Alaska, 290
fisheries management and *Theragra chalcogramma* (continued)

use of acoustics to evaluate effect of fishing on school characteristics, 125-140

“fishing down the food web,” 305, 310

Flemish Cap, 42, 43, 47, 49

flounder. See *Atheresthes stomias* (arrowtooth flounder)

follicles of *Theragra chalcogramma*, 2, 3, 5, 7-8, 10, 11, 12, 13, 14, 16

food supply, 241. See also trophic level for *Gadus macrocephalus*, seasonal food habits, 305-315

for *Gadus morhua*, affecting maturation and fecundity, 192

for *Melanogrammus aeglefinus*, Georges Bank consumption estimates, 148-149, 150-158

for *Theragra chalcogramma*

high subsidy periods, 254, 256, 260, 261, 263, 264, 267

impact on school patterns of juveniles, 272-273, 283

low subsidy periods, 254, 256, 260, 261, 262, 263, 264

ontogenetic, temporal, and spatial variation of feeding niche in an unexploited population, 251-269

foraging strategies

of predators, 126, 135, 138, 283, 299, 300

of *Theragra chalcogramma*, 252-253, 265, 272, 273, 280, 283, 284, 295

4VW. See Northwest Atlantic Fisheries Organization division 4VW

Foy, R.J., 239-250

Frank, Kenneth T., 111-124

fry. See juveniles

Fudge, Susan B., 179-196, 197-219

Fulton condition factor, 102, 183, 184

Funka Bay, Japan, 15

Fylla Bank, 102

G

Gadus macrocephalus, 305-315

effect of temperature on recovery following exhaustive exercise, 239-250

variations in trophic level with changes in size and season, 305-315

Gadus morhua, 3, 15, 240

changes in fecundity in a stressed population off Newfoundland, 179-196

fluctuations of stock in Northeast Atlantic, 25-38

off Labrador and Eastern Newfoundland, 67-88

rebuilding from a spawning ground in Newfoundland waters, 197-219

throughout North Atlantic, 39-66

in West Greenland waters, 89-110

gonads, 1, 2, 17, 182, 183, 184, 185, 187, 200

homing of adult *Gadus morhua*, 211-212

relationship of recruitment data to stock biomass and temperature, 221-237

Galeorhinus galeus, 173
gametes, 3, 186-187

GDD. See growing degree-day (GDD) genetics

changes in age- and size-at-maturity, 52-53

eyear maturation of *Gadus morhua*, 192

removal of "maturation at old age genes, 33

Georges Bank ecosystem density-dependent growth of *Melanogrammus aeglefinus*, 141-160

Gadus morhua in, 40, 41, 42, 52

gillnets, 69

gluconeogenesis, 246-247

glucose, 239, 241, 243, 244-245, 246, 247, 248

glycogen, 240-241, 247

glycogenolysis, 246-247

GOA. See Gulf of Alaska (GOA)
gonado-somatic index (GSI). See GSI

gonads of *Gadus morhua*, 1, 2, 17, 182, 183, 184, 185, 187, 200

Grand Bank ecosystem, 42, 47, 49, 52, 68, 69, 80, 189, 214, 232

Greenland and *Gadus morhua*, 26, 40, 42-43, 45-46, 50, 51, 57, 89-110

Greenland halibut. See *Reinhardtius hippoglossoides*
gray seals. See *Halichoerus grypus*
growing degree-day (GDD), 111-124

growth rate

of *Gadus morhua*, 40, 42, 50, 51-52, 54-55, 189, 192, 198
growth rate (continued)
of Melanogrammus aeglefinus, 111-124, 145, 146-147, 149-151, 153-158
of Theragra chalcogramma, 163
GSI, 1, 2, 3, 11-15
Gulf of Alaska (GOA)
Gadus macrocephalus, variations with changes in size and season, 305-315
Theragra chalcogramma in, 136, 252, 266, 289, 294, 298, 299, 301
juvenile aggregation structure, 271-287
management strategy evaluation approach and fishery in, 317-346
T
Theragra chalcogramma (continued) use of acoustics to study juvenile aggregation structure in Gulf of Alaska, 125-140
hydroacoustics (continued)
Theragra chalcogramma (continued) use of acoustics to study as predator and prey in Prince William Sound, 289-304
use of acoustics to study juvenile aggregation structure in Gulf of Alaska, 125-140
inshore/offshore distribution of Gadus morhua, 49, 53, 68, 69, 187-188
inshore fishery, 70, 71, 73, 76, 78, 79, 81-82, 95, 96
inshore spawning, 57, 94, 180
of Theragra chalcogramma, 289, 298, 299, 300, 301
Institute for Sea Fisheries, 91
International Comprehensive Ocean Atmosphere Dataset (ICOADS), 223
International Council for the Exploration of the Seas (ICES). See ICES
International Whaling Commission, 318
ion concentrations, 247
Irminger Current, 92, 107
juveniles
juvenile surveys, 202
rebuilding spawning grounds in coastal Newfoundland, 210-211
Melanogrammus aeglefinus, size affected by stock density, 156-158
Theragra chalcogramma, juvenile aggregation structure, 271-287, 295
Katsuwonus pelamis, 173
Kline Jr., Thomas C., 251-269
Kookesh, Matthew, 125-140
Kruse, Gordon H., 1-23
Kruskall-Wallis test, 229, 230
Labrador

Gadus morhua

fecundity of, 184, 186, 187, 191, 192
fluctuations of, 40, 42-43, 46, 47-48, 51, 52, 53, 56, 57, 58, 59, 67-88, 179-180, 198
moratoria on fishing, 49
Mallotus villosus found, 54-55, 192

Labrador Current, 42, 50, 203

lactate, 239, 240-241, 243, 244, 246, 247, 248

LaD. See length-at-day (LaD)

larvae

dispersion mechanisms, 94
of *Gadus morhua*, 30, 51, 55, 57, 92, 94, 101, 199
rebuilding spawning grounds in coastal Newfoundland, 202, 203, 204, 208, 210-211
larval drift, 94, 105, 107, 108
of *Melanogrammus aeglefinus*, 149

Lawson, G.L., 197-219

length

Gadus macrocephalus

changes in proportions of prey, 311
trophic level of, 311-312
of *Gadus morhua*
and annual egg production, 209
fecundity-length relations, 184-186, 187
length-at-age, 30, 32, 101-103
length-at-day (LaD), 111, 113, 115, 116-119, 121-123
of *Melanogrammus aeglefinus*
age-dependent linear regression of length-at-age, 113, 116-119
length-at-age, 112, 113, 121, 144, 145, 146, 148, 149, 155
of *Theragra chalcogramma* compared to trophic level in, 260, 261, 262, 263, 264
light and *Theragra chalcogramma*
aggregations, 272, 282-283

Lilly, George R., 39-66, 67-88
Link, Jason S., 141-160

livers

of *Gadus morhua*, 81, 186, 197, 208, 210
liver index for *Gadus morhua*, 54, 58, 75, 183, 184, 187, 210
relationship to fecundity, 186
measurement of, 5, 183

local recruitment of *Gadus morhua*, 197, 208, 211, 212, 213
longliners, 69
low subsidy food supply periods for *Theragra chalcogramma*, 254, 260, 261, 262, 263, 264

mackerel, 55

macroscopic maturity stage, 15, 17-18
descriptive guide to macroscopic staging of pollock ovaries, 21-23

macrozooplankton. See zooplankton

Magnuson-Stevens Fishery Conservation and Management Act (MSFCMA), 319, 321, 324, 336
Mallotus villosus, 30, 33, 42, 54-55, 56, 68, 81, 83, 192, 208, 310
management strategy evaluation (MSE) key steps in, 321
management strategy evaluation approach and fishery for *Theragra chalcogramma* in the Gulf of Alaska, 317-346
Markov chain Monte Carlo (MCMC) algorithm, 322, 337, 344-345
Marmot Bay, 307, 309, 313

maturation

age-at-maturity, 43, 52-53, 75, 97, 103-104, 179-180, 190
of *Gadus morhua*, 34, 58
early maturation, 190-191, 192
mean age in Barents Sea, 33
in northwest Atlantic, 188
size-at-maturity, 50, 52-53
of *Melanogrammus aeglefinus*, 113, 122
of *Theragra chalcogramma*
macroscopic maturity stages, 1-23

McKelvey age 1 survey, 343, 344
Medica EasyElectrolytes ion meter, 243
Megaptera novaeangliae, 295
Melanogrammus aeglefinus, 3, 111-124
density-dependent growth on the Georges Bank, 141-160
relationship of recruitment data in relation to stock biomass and temperature, 221-237
Mello, L.G.S., 197-219

metabolic recovery rate, 112, 240-241, 247, 248
methodologies

acoustic surveys, 126-127, 200, 273-275
methodologies (continued)
analytical assessments, 90-91, 308
of stock, recruitment, and temperature
data, 223-228
catch statistics, 90-91
data collection, 113-115
models and modeling, 164-168, 322-323
sampling, 3-5, 180-182, 253-254, 291-293, 307-308
simulation testing, 323
surveys, 91-92, 200
acoustic trawl surveys, 180, 290, 291-292, 293
aerial surveys, 292, 294
bottom trawl surveys, 126-127, 162, 164, 166, 169, 170, 172, 290, 298-299, 322, 329, 343, 346
McKelvey age 1 survey, 343, 344
and the operating model in MSE, 342
trawl surveys, 146, 253-254, 273-275, 291-293
swim trials, 241-243
tagging, 199
MFMT. See “true” maximum fishing mortality
migration
of Clupea harengus membras, 174, 266, 289
of Gadus macrocephalus, 239
of Gadus morhua, 25-26, 27, 50, 68-69, 81, 94, 97, 180, 189, 211
nuclear migration, 9, 11, 12, 13, 14, 16
of Theragra chalcogramma, 265, 266, 272, 289, 292
age-specific migration in an age-structured model, 161-178
vertical migration, 292
Miller, Sara E., 161-178
models and modeling, 311-312
estimation model in MSE, 317, 318, 319
food web modeling, 267, 308, 310, 313
for Gadus macrocephalus, prey, 308
for Melanogrammus aeglefinus, 149-151, 153-156
operating model in MSE, 317, 322-323, 341-346
population dynamics model, 322, 323
for Theragra chalcogramma, 161-178
moratoriums, 49, 68, 70-71, 73, 82, 83, 188
mortality, 226
fishing mortality rates, 29-30, 47-48, 73-75, 80-82, 91, 234, 319
mortality (continued)
fishing mortality rates (continued)
equation for fishing mortality using
operating model in MSE, 342
of Gadus morhua, 10, 53, 54-56, 98, 99, 192, 215
natural mortality, 42, 53, 54-56, 58, 72, 90, 91, 92, 93
of Melanogrammus aeglefinus, 143
natural mortality, 122
offshore mortality, 80-82
overfishing, 46, 55, 67, 76, 143, 216, 319, 320, 324, 325, 332, 333
size-selective mortality, 122
of Theragra chalcogramma, 321, 322, 325
natural mortality, 163, 164, 165, 166-167, 168, 337, 341
“true” maximum fishing mortality, 324, 327
“Tier 3 NPFMC decision rule,” 319, 320
total mortality, 83
VPA fishing mortalities, 104
Motada splitter, 183
MSE. See management strategy evaluation (MSE)
MSFCMA. See Magnuson-Stevens Fishery Conservation and Management Act (MSFCMA)

N
NAFO. See Northwest Atlantic Fisheries Organization (NAFO)
Nakken, Odd, 25-38
NAO. See North Atlantic Oscillation (NAO)
NASC. See nautical area scattering coefficient (NASC)
National Marine Fisheries Service (NMFS), 3, 290, 298, 308, 319, 329, 343, 346
natural mortality, 226
of Gadus morhua, 10, 42, 53, 54-56, 58, 72, 90, 91, 92, 93
of Melanogrammus aeglefinus, 122
of Theragra chalcogramma, 163, 164, 165, 166-167, 168, 337, 341
Nature (journal), 299
nautical area scattering coefficient (NASC), 129, 132, 133, 137
nekton, 252
Neocalanus cristatus, 257-258, 292. See also copepods
Neuheimer, Anna B., 111-124
Newfoundland, 49. See also Avalon Peninsula; Bar Haven; Placentia Bay
cchanges in fecundity in a stressed population of Gadus morhua, 179-196
fluctuations of Gadus morhua off Eastern Newfoundland, 67-88
Newfoundland Shelf, 77
rebuilding Gadus morhua from a spawning ground, 197-219
next neighbor distance (NND), 126, 130-131, 132-133, 134, 135, 137
nitrogen isotope values, 251, 252, 255-257, 259-260
NMFS. See National Marine Fisheries Service (NMFS)
North Atlantic Drift, 42
North Atlantic Oscillation (NAO), 50, 76
Northeast arctic cod. See Gadus morhua
Northeast Fisheries Science Center (NEFSC), 142, 144, 146, 148
northern cod. See Gadus morhua
North Pacific Fishery Management Council (NPFCM), 324, 336
“Tier 3 NPFCM decision rule,” 319, 320
Northwest Atlantic Fisheries Organization (NAFO), 67, 68, 114
NAFO division 2J, 13, 44, 67, 68, 69, 70, 74, 75, 76, 83, 180-182, 184-186, 191, 192
NAFO division 3KL, 14, 44, 67, 68, 69, 70, 74, 75, 76, 83, 180-182, 185, 186, 188, 191
NAFO division 3Ps, 180-182, 185, 186, 188, 197, 198, 202, 212, 215
NAFO division 4VW, 111-124
Norway, 30, 35, 42
fecundity of Gadus morhua in, 179, 184, 186, 191
nuclear migration, 9, 11, 12, 13, 14, 16

O
OFL. See overfishing level (OFL)
Onchorhynchus clarki clarki, 240
Onchorhynchus gorbuscha, 252, 310
Theragra chalcogramma as predator of juveniles, 289, 291, 292-293, 300
Onchorhynchus keta, 252
Onchorhynchus kisutch, 240
Onchorhynchus mykiss, 241, 246, 247, 248
Onchorhynchus nerka, 240
Onchorhynchus tshawytscha, 240
ontogenetic development
diet and food chains, 148
ontogenetic, temporal, and spatial variation of feeding niche of Theragra chalcogramma, 251-269
ontogenetic assessments, 260-264
ontogenetic movement, 163, 167
oocytes. See eggs
operating model in MSE, 317, 322-323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 341-346
Ottersen, Geir, 39-66
ovaries
descriptive guide to macroscopic staging of pollock ovaries, 21-23
ovarian stages of Theragra chalcogramma, 1-23
overfishing, 46, 55, 67, 76, 143, 216, 320, 324, 325, 332, 333
overfishing level (OFL), 319

P
Pacific cod. See Gadus macrocephalus
Pacific Fishery Management Council (PFMC), 336
Pacific halibut. See Hippoglossus stenolepis
Pacific herring. See Clupea pallasii
Pacific skipjack tuna, see Katsuwonus pelamis
Pacific yellowfin tuna. See Thunnus albacares
Pagophilus groenlandicus, 55-56, 81, 83
RV Pandalus, 291-293
Paralichthys camtschaticus, 290
pelagic waters, 116, 119, 122, 306
pelagic clupeids compared with demersal gadoids, 221-237
celagic distribution structure of Theragra chalcogramma, 289, 290-291, 292, 295, 297, 298, 300
pelagic species characteristics, 54, 55, 56, 101, 126, 130, 208, 252
performance measures and MSE, 317, 318, 323-324, 325
pink salmon. See Onchorhynchus gorbuscha
Placentia Bay, 188, 197, 198, 203, 215
place. See Hippoglossides platessoides
planktivorous forage fish, 55, 266, 290
plasma
Cl, 245, 247
cortisol, 243, 246-247
glucose, 244-245, 248
lactate, 244, 248
plasma (continued)
Na+, 245, 247
protein, 244
Pollachius virens, relationship of recruitment data to stock biomass, 221-237
Pollock Conservation Cooperative (PCC), 3, 18, 301
population dynamics, 221
and climate, 222
of Gadus morhua, 68, 71-74, 198, 199, 216
population dynamics model, 43, 319, 322, 323
and operating model in MSE, 341-342
of Theragra chalcogramma, 162, 163, 164
potential fecundity, 180
predators and predation, 271-272
foraging strategies of, 126, 135, 138, 283, 299, 300
Gadus macrocephalus as a predator, 306
light levels effect on predator activity, 282-283
school structure minimizing detection by predators, 280-281
sea lions, 126, 135, 290-291, 292, 294, 295, 299-300, 301, 319
seals, 55-56, 67, 76, 81, 84, 106-107
Theragra chalcogramma as predator in Prince William Sound, 289-304
trophic level of, 306
prematuration. See maturation
prey. See also consumption; food supply; foraging strategies
availability of, 54-55
of Gadus macrocephalus, 308-310, 311
of Gadus morhua, 192
of Melanogrammus aeglefinus, 153
prey group size, 272
of Theragra chalcogramma, 252, 266-267, 283, 289-304
Pribilof Islands, 3, 17
Prince William Sound, Alaska (PWS)
Theragra chalcogramma, ontogenetic, temporal, and spatial variation of feeding niche, 251-269
Theragra chalcogramma as predator and prey, 289-304
Prince William Sound Science Center, 289, 290, 292, 301
protein, 3, 241, 243, 244, 245, 248
Punt, André E., 317-346
PWS. See Prince William Sound, Alaska (PWS)

Q
Quinn II, Terrance J., 125-140, 161-178

R
rainbow trout. See Oncorhynchus mykiss
realized fecundity, 180
recovery of Gadus macrocephalus after exhaustive exercise, temperature effects on, 239-250
recruitment
Beverton-Holt stock-recruitment model, 202, 212, 226, 330, 332, 333, 334, 335
of Gadus morhua, 32, 34, 49-50, 51, 73, 90, 202
changes in around Greenland, 98-101, 105-106
local recruitment, 197, 208, 211, 212, 213
“low end” stock recruitment relationships, 198, 212-214
ratio of recruitment to SSB, 100, 104
relationship to egg potential, 217
retention not explaining local recruitment, 208, 210-211
spawning stock recruitment relationship, 30, 35, 36
stock recruitment relationship, 198, 212-213
of Melanogrammus aeglefinus
density-dependent growth on the Georges Bank, 141-160
stock recruitment relationship, 157
relationship of recruitment and temperature for 57 commercial fish stocks, 221-237
Ricker model of stock recruitment, 226, 330, 331, 332, 333, 334, 341, 342, 344, 345
and sea surface temperature (SST), 228-230, 231, 232-234, 235
age of recruits, 224-225
Shepherd stock-recruitment curve, 157
stock-specific recruitment, 226
ratio of recruitment to SSB, 226-228, 230
of Theragra chalcogramma, 169, 171, 173, 322
in the Eastern Bering Sea, 163, 165
relationship to spawning biomass, 324-325
recruitment (continued)
of Theragra chalcogramma (continued)
stock recruitment relationship,
318, 319, 322, 325,
330-335, 336, 337, 342,
344
red king crab. See Paralithodes
camtschaticus
redundancy analysis (RDA), 271, 277, 278,
279, 280, 281
regression analysis, 155, 184, 297
Reinhardtius hippoglossoides, 3
relative fecundity, 180
reproduction. See eggs; fecundity and
Gadus morhua; gametes; ovaries
Ricker model of stock recruitment, 226,
330, 331, 332, 333, 334, 341, 342,
344, 345
Robichaud, D., 197-219
Rose, George A., 179-196, 197-219
Rosing-Asvid, Aqqalu, 39-66
Rothschild, Brian J., 39-66
R software, 277
S
saithe. See Pollachius virens, relationship
of recruitment data to stock
biomass
salinity, 42, 51
salmon. See Oncorhynchus gorbuscha
(pink salmon); Oncorhynchus
keta (chum salmon);
Oncorhynchus kisutch (coho
salmon); Oncorhynchus
nerka (sockeye salmon); Oncorhynchus
tshawytscha (chinook salmon);
see Salmo salar (Atlantic salmon)
Salmo salar, 240-241, 248
sand lance. See Ammodytes hexapterus
Sardinops sagax (sardines), 139, 272, 318
school characteristics
clustering of schools, 126, 130-131,
132-133, 134, 135, 137-138
of Theragra chalcogramma, 125-140,
275-276
school shark. See Galeorhinus galeus
Scotian Shelf, 41, 42, 43, 46, 47, 49, 50, 51,
52, 53, 54, 55, 80, 111, 112-113,
114, 116, 121
sea lions, 126, 135, 290-291, 292, 294,
295, 299-300, 301, 319. See also
Eumetopias jubatus (Steller sea
lion)
seals, 55-56, 67, 76, 81, 84, 106-107. See
also Halichoerus grypus (gray
seals); Pagophilus groenlandicus
(harp seals)
seasonal aspects of Gadus macrocephalus
diet, 305-315
sea surface temperature (SST), 102, 210,
223, 227
age of recruits, 224-225
and recruitment, 228-230, 231,
232-234, 235
semi-pelagic species, 126
sentinel surveys, 71
sequential population analysis (SPA), 202,
203, 215
of Gadus morhua, 43-46, 47, 53, 71-74,
80
shark. See Galeorhinus galeus (school
shark)
Shelikof Strait, 15, 273, 274-275, 277-278,
279, 281, 282, 283, 284, 329, 343
Shen, Haixue, 125-140
Shepherd stock-recruitment curve, 157
Sherwood, G., 197-219
shoaling behavior, 271-272
shrimp fisheries, 80
Simrad EK500 quantitative echo-sounding
system, 274
simulation testing, 317-346
size
of Gadus macrocephalus varying with
changes in season, 305-315
of Gadus morhua
and fecundity, 187, 188
low stock size and egg potential,
212-214, 216
size-at-age, 51-52, 75, 104, 179
size-at-maturity, 52-53
size enhancing egg production,
205, 208
of Melanogrammus aeglefinus
juvenile haddock size affected by
stock density, 156-158
size-at-age, 111-124, 144, 145,
146-147, 149, 153, 154-155,
156, 158
skipjack tuna, see Katsuwonus pelamis
(Pacific skipjack tuna)
Smith Sound, 188
Snelgrove, P.V.R., 197-219
sockeye salmon. See Oncorhynchus nerka
SOFTWARE® PRO software, 243
software
Echoview software, 127-128, 275, 276
R software, 277
SOFTWARE® PRO software, 243
Sound Ecosystem Assessment program (SEA), 289, 295, 301
spatial displacement of Gadus morhua, 25
spatial distribution of Theragra chalcogramma, 125-126, 136, 137, 138, 162-163
spatial management
and Gadus morhua fecundity, 187-188
ontogenetic, temporal, and spatial variation of feeding niche of Theragra chalcogramma, 251-269
spatial variation and aggregation, 282, 284
spawning
age diversity of, 49-50
batch spawning, 2, 205
of Gadus morhua, 54, 56-57
adults homing to same spawning grounds, 211-212
around Greenland, 91, 94-95, 97-98, 100, 105, 108
changes in fecundity in a stressed population off Newfoundland, 179-196
GSI as a predictor of, 14-15
rebuilding stock from a spawning ground in Newfoundland waters, 197-219
self-supporting spawning populations, 57
skipped spawning, 188
spawning intensity, 200, 207
spawning/recruitment relationship, 30-35
of Mallotus villosus, 68
spawning stock biomass (SSB), 97-98, 103-104, 197, 319. See also biomass data
of Clupea harengus membras, 174
of Gadus morhua, 35, 36, 43, 51, 203, 213, 215
impact of mean bottom temperatures on, 106-107
of Melanogrammus aeglefinus, 144, 153, 156
ratio of recruitment to SSB, 100, 104, 226-228, 230, 232-234
relationship of recruitment and temperature for 57 commercial fish stocks, 221-237
spawning biomass-per-recruit, 319-320
of Theragra chalcogramma, 2
spawning (continued)
of Theragra chalcogramma descriptive guide to macroscopic staging of pollock ovaries, 21-23
and spawning biomass, 323, 324-330, 331-335, 343
SPECTRAm® microplate spectrophotometer, 243
spratt. See Sprattus sprattus
Sprattus sprattus, 221-237
SST. See sea surface temperature (SST)
stable isotope analysis, 167, 252, 255-257, 265-266. See also carbon isotope values; nitrogen isotope values
Stable Isotope Facility of University of Alaska (SIF), 254
Stahl, Jennifer P., 1-23
Steller sea lions. See Eumetopias jubatus
Stenson, Garry B., 39-66
Stienessen, Sarah C., 271-287
stock assessment. See also decline of stock of Gadus morhua
low population size, 198, 199
in North Atlantic, 39-66
in Northeast Atlantic, 25-38
off of Labrador, 67-88
off of Newfoundland, 67-88, 180
rebuilding stock from a spawning ground off of Newfoundland, 197-219
in West Greenland waters, 89-110
of Melanogrammus aeglefinus on the Georges Bank, 141-146, 147, 150, 153-158
of Theragra chalcogramma, 125, 138, 318, 330-335
age-structured stock assessment, 161-178
in Gulf of Alaska, 323
stock development of Gadus morhua, 105-107
stock recruitment. See recruitment stock structure of Gadus morhua in Greenland waters, 94-95
stressed populations of Gadus morhua off Newfoundland, 179-196
Sundby, Svein, 39-66
surface layer temperature of water. See sea surface temperature (SST)
surveys, 91-92, 200
acoustic trawl surveys, 180, 290, 291-292, 293
aerial surveys, 292, 294
surveys (continued)
bottom trawl surveys, 126-127, 162, 164, 166, 169, 170, 172, 290, 298-299, 322, 329, 343, 346
McKelvey age 1 survey, 343, 344
and the operating model in MSE, 342
trawl surveys, 146, 253-254, 273-275, 291-293

Svedäng, Henrik, 39-66
Swain, Douglas P., 39-66
swimming performance of *Gadus macrocephalus*, 239-240

T
TAC. See total allowable catch (TAC)
Taggart, Christopher T., 111-124
Tanner crab. See *Chionoecetes bairdi*
temperature. See also water temperature
air temperatures, 92-93
data collection of, 113-115
effect on distribution of fish aggregations, 272
effect on *Gadus macrocephalus* following exhaustive exercise, 239-250
impact on growth rates and size, 192
impact on variations in development and size-at-age, 112, 121-123
relationship of recruitment and temperature for 57 commercial fish stocks, 221-237
and use of growing-degree-day measure, 119-122
Theragra chalcogramma, 310
biomass data compared with *Clupea pallasi*, 293-294, 298
juvenile aggregation structure in the Gulf of Alaska, 271-287
management strategy evaluation approach and fishery in Gulf of Alaska, 317-346
ontogenetic, temporal, and spatial variation of feeding niche, 251-269
oviduct stages of, 1-23
as predator and prey in Prince William Sound, 289-304
as prey of *Gadus macrocephalus*, 310
use of acoustics to evaluate effect of fishing on school characteristics, 125-140
thermal history. See growing degree-day (GDD)
Thorne, Richard E., 289-304
3KL. See Northwest Atlantic Fisheries Organization division 3KL
3Ps. See Northwest Atlantic Fisheries Organization division 3Ps
Thunnus albacares, 173
Thunnus maccourii. See *Katsuwonus pelamis* (Pacific skipjack tuna)
“Tier 3 NPFMC decision rule,” 319, 320
total allowable catch (TAC). See also fisheries management
of *Gadus morhua*, 30, 48, 52, 69-70, 78, 79, 82, 83, 180
regulations regarding, 105
of *Theragra chalcogramma*, 174-175, 337
trawl surveys. See surveys
Trinity Bay, 211
trophic level. See also food supply
changes in over 50 years in the Gulf of Alaska, 310
of *Gadus macrocephalus*, variations with changes in size and season, 305-315
mean trophic level of the catch, 305-306
of *Theragra chalcogramma*, 257-258, 261-262, 263, 264, 265
and ontogenetic food chain length shifts, 266-267
tout. See *Oncorhynchus clarki clarki* (cut-throat trout); *Oncorhynchus mykiss* (rainbow trout)
“true” maximum fishing mortality, 324, 327
tuna. See *Katsuwonus pelamis* (Pacific skipjack tuna); *Thunnus maccourii* (bluefin tuna); *Thunnus maccourii* (Pacific yellowfin tuna)
2J. See Northwest Atlantic Fisheries Organization division 2J
U
unexploited populations, 235
ontogenetic, temporal, and spatial variation of feeding niche of *Theragra chalcogramma*, 251-269
UN FAO Code of Conduct for Responsible Fisheries, 319
Unimak Island, Alaska, 3, 125, 127, 128, 137
study of oviduct stages of *Theragra chalcogramma*, 1-23
University of Alaska, Stable Isotope Facility, 254
Urban, Dan, 305-315
Index

V
variography, 134, 136, 138
Vázquez, Antonio, 39-66
vertical distribution of Theragra chalcogramma, 128, 129, 132, 136, 137, 296
vertical migration. See migration
Vining, Ivan, 305-315
virtual population analysis, 43, 90-91, 97, 223
vitellogenesis, 2, 15
von Bertalanffy growth curves, 146

W
walleye pollock. See Theragra chalcogramma
water column, 272, 276-277
water temperature, 30
 bathypelagic water temperature, 116, 119, 122
cold intermediate layer (CIL), 76, 77
effect of Labrador Current, 42, 50, 203
effects of climate variability, 50
and Gadus morhua, 78, 80-82
 Bar Haven spawning ground, 203, 204
 and decline and recovery in North Atlantic, 42, 50
development rates of gonads, 17
stock assessment in Barents Sea, 26-29, 30-35, 36
stock assessment off Labrador and Eastern Newfoundland, 77
 and gamete development, 3
 mean bottom temperatures, 106-107
 and Melanogrammus aeglefinus, 116
on the Georges Bank, 147-148, 150, 153-158
sea surface temperature (SST), 102, 210, 223, 227
 age of recruits, 224-225
 and recruitment, 228-230, 231, 232-234, 235
and Theragra chalcogramma
 and aggregation depths, 276-277
effect on distribution of fish aggregations, 272
 in the Gulf of Alaska, 274-275
 in West Greenland waters, 26, 92
 weight
 of Gadus macrocephalus, 241, 242, 308, 309-310, 311
weight (continued)
of Gadus morhua, 90-91, 215
 fecundity-weight relations of
 Gadus morhua, 180, 183, 184-186, 187, 188, 190, 191
gonads and livers, 182, 183
 weight-at-age, 30, 33, 36, 51-52, 58, 73, 101, 104
of Melanogrammus aeglefinus, 148, 149, 153
 weight-at-age, 144, 157
of Theragra chalcogramma, 274, 276, 291
 mean body weight, 169
 and ovarian stages, 1, 2, 3, 4, 13, 14, 15
 weight-at-age, 163, 337
 wet weight, 308
Wespestad, Vidar, 125-140
West Greenland
 fluctuations of Gadus morhua, 42-43, 45, 46, 50, 57, 89-110
 water temperature, 26, 92
West Greenland Current, 92
Wieland, Kai, 39-66, 89-110
Wilson, Christopher D., 271-287
Windle, M.J.S., 197-219
winter roe fishery, 162

Y
year-class
 of Melanogrammus aeglefinus, 111, 115, 116, 117, 118, 119, 121-122, 141, 143, 144-145, 146, 149, 152, 154, 158
 of Theragra chalcogramma, 163, 172, 173, 273, 277
yellowfin tuna. See Thunnus albacares (Pacific yellowfin tuna)
yolks
 of Gadus morhua, 182
 of Theragra chalcogramma, 1-23

Z
Zaikof Bay, Alaska, 251, 255-256, 259, 260, 261, 263, 264, 266
zooplankton, 51, 83, 251, 252, 258, 289, 291, 300. See also food supply; prey
climate-driven changes in population, 267
macrozooplankton, 292, 298
zooplanktivores, 252, 266-267, 305