REMEDIATING IMPACTS OF GLOBAL CLIMATE CHANGE-INDUCED SUBMERGENCE ON SALT MARSH ECOSYSTEM FUNCTIONS

A Dissertation

Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy

in
The Department of Oceanography and Coastal Sciences

by
Camille LaFosse Stagg
B.S., Christian Brothers University, 2002
M.S., Clemson University, 2004
May 2009
For Henry
ACKNOWLEDGEMENTS

First and foremost, I would like to thank my major advisor, Dr. Irving Mendelssohn for his vital academic and personal support. This accomplishment would not have been possible without his scientific insight and guidance. I would also like to thank my advisory committee, Drs. Jaye Cable, John Day, John Fleeger and Robert Gambrell for their continuous assistance and direction throughout this stage of my academic career. Additionally, I thank Louisiana Sea Grant, whose financial support made this research possible. Special thanks to all of my fellow graduate students and colleagues, Joe Baustian, Jane Buck, Sean Graham, Carey Perry, Josh Roberts, Angela Schrift and Matthew Slocum, whose help in the field and laboratory was indispensable and made this an especially enjoyable experience. I owe the greatest debt of gratitude to my family, especially my husband, Philip; my father and mother, Thomas and Gayle; and my brother and sisters, Clayton, Emily and Lauren, who gave unwavering motivation and support throughout my entire academic career. Their continuous encouragement has provided me with the confidence to accomplish anything. Thank you.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. iii

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

ABSTRACT ... x

CHAPTER 1
INTRODUCTION .. 1
 1.1 Global Climate Change and Wetland Submergence ... 1
 1.2 Restoration of Submerged Wetlands with Sediment Addition .. 3
 1.3 Rationale ... 4
 1.4 Objectives .. 7
 1.5 Literature Cited ... 8

CHAPTER 2
IMPACTS OF SEDIMENT ADDITION ON ABOVE- AND BELOWGROUND PRIMARY PRODUCTION .. 17
 2.1 Introduction ... 17
 2.2 Materials and Methods ... 19
 2.2.1 Site Description and Experimental Design ... 19
 2.2.2 Primary Production ... 21
 2.2.3 Soil Physico-Chemical Characterization ... 22
 2.2.4 Statistical Analysis ... 24
 2.3 Results ... 26
 2.3.1 Primary Production ... 26
 2.3.2 Soil Physico-Chemical Characteristics .. 28
 2.3.3 Determinants of Primary Production ... 32
 2.4 Discussion ... 33
 2.5 Conclusions .. 40
 2.6 Literature Cited ... 41

CHAPTER 3
EFFECT OF SEDIMENT ADDITION ON DECOMPOSITION OF BELOWGROUND ORGANIC MATTER .. 49
 3.1 Introduction ... 49
 3.2 Materials and Methods ... 51
 3.2.1 Site Description and Experimental Design ... 51
 3.2.2 Root and Rhizome Decomposition ... 53
 3.2.3 Cellulose Decomposition .. 55
 3.2.4 Soil Physico-Chemical Measurements .. 56
 3.2.5 Statistical Methods ... 58
 3.3 Results ... 59
LIST OF TABLES

2.1 Principle component analysis of soil variables ...30

2.2 Soil physic-chemical characteristics of the restored and natural marshes in
2005 and 2006 .. 32

2.3 Multiple regression parameters that explain variance associated with response variables,
above- and belowground production ... 33

3.1 Correlations between indicator variables and principle components (PCs) for soil
characteristics... 64

3.2 Multiple regression models for root+rhizome and cellulose decomposition as selected from
all possible models by the stepwise selection method.. 66

4.1 Correlations between indicator variables and principle components (PCs) for soil
characteristics... 94

4.2 Multiple regression analyses describing relationships between L. irrorata responses and
environmental characteristics... 97

4.3 Correlations between L. irrorata biological responses and environmental variables 98

5.1 Correlations between indicator variables and principal components (PCs) for soil
characteristics at Venice and Fourchon restoration sites .. 127

5.2 Multiple regression parameters that explain variance associated with response variables, total
cover and recovery rate, at each of the two restoration sites 1) Venice and 2) Fourchon........ 130
LIST OF FIGURES

2.1 Sediment subsidy treatment site (blocks 1-4) and references (blocks 5-8)21
2.2 Interactive effect of time and above- versus belowground production.......................27
2.3 Effect of sediment addition on total *Spartina alterniflora* production as well as ratios of below versus aboveground live biomass...28
2.4 Turnover rates of above- and belowground materials at different levels of sediment addition ..29
2.5 Effect of sediment addition on soil characteristics representing 1) Soil moisture and salinity (PC1) and 2) Iron and phosphorus (PC2) ..31
3.1 Sediment subsidy treatment site (blocks 1-4) and references (blocks 5-8).53
3.2 The interactive effects of sediment subsidy and tissue type on the rate of belowground decomposition ..60
3.3 The effect of sediment subsidy on belowground decomposition of total belowground biomass (root+rhizome tissue) ...61
3.4 Decomposition of cellulose (% CTSL·day$^{-1}$) as effected by sediment subsidy62
3.5 Graph showing the interactive effects of depth and elevation on cellulose decomposition (% CTSL·day$^{-1}$) ..63
3.6 Effect of sediment subsidy on 1) Soil moisture and salinity (PC1), 2) Iron and phosphorus (PC2) and 3) Redox Potential ..65
4.1 Sediment subsidy treatment site (blocks 1-4) and references (blocks 5-8)83
4.2 Snail enclosures located at each STL and reference block ...85
4.3 Effect of sediment subsidy on *L. irrorata* 1) Growth rate, 2) Survival rate and 3) Production ...91
4.4 *Spartina alterniflora* canopy cover at different levels of sediment addition93
4.5 Effect of sediment subsidy on 1) Soil moisture and salinity (PC1), 2) Iron and phosphorus (PC2) and 3) Redox Potential ..96
5.1 Sediment addition at 1) Fourchon (sediment addition: 2002) and 2) Venice (sediment addition: 1992) restoration sites ..112
5.2 The effect of sediment subsidy and disturbance intensity on total (live and dead) *S. alterniflora* cover one year after applied disturbances. 1) Interaction of sediment subsidy and disturbance intensity on total cover at Venice. Main effects of 2) sediment subsidy and 3) disturbance intensity on total cover at Fourchon .. 120

5.3 Effect of sediment subsidy on recovery rate at 1) Venice and 2) Fourchon. Effect of disturbance intensity on recovery rate at 3) Venice and 4) Fourchon. ... 122

5.4 Effect of sediment subsidy on odds of stability at Venice (Type 3 Likelihood Ratio test, p < 0.05) .. 124

5.5 Effect of disturbance intensity on stability at Fourchon (1). Effect of sediment subsidy on stability after 2) non-lethal and 3) lethal disturbances at Fourchon (Type 3 Likelihood Ratio test, p < 0.05) .. 125

5.6 Effect of sediment subsidy on PC1s at 1) Venice: PC1 (Salinity), and 2) Fourchon: PC1 (Soil Moisture/Salinity). Effect of sediment subsidy on PC2s at 3) Venice: PC2 (Reduction), and 4) Fourchon: PC2 (Fe/P) ... 129
ABSTRACT

Impacts of global climate change, such as sea level rise and severe drought, have altered the hydrology of coastal salt marshes resulting in submergence and subsequent degradation of ecosystem function. A potential method of rehabilitating these systems is the addition of sediment-slurries to increase the elevation of the marsh surface, thus ameliorating the effects of excessive inundation. Although this technique is growing in popularity, the successful restoration of ecological function after sediment addition has received little attention. The purpose of this research was to determine if sediment subsidized salt marshes are functionally equivalent to natural marshes and whether salt marshes restored with this technique are sustainable over time. This research addressed the following questions: 1) Does sediment-slurry addition restore important ecological functions such as primary production, organic matter decomposition and secondary production?, 2) If so, what level of sediment addition results in optimal function?, 3) What soil physico-chemical parameters associated with sediment addition influence these ecological functions? and 4) How does vegetation resilience in sediment subsidized marshes change over time?

Moderate intensities of sediment-slurry addition, resulting in elevations at the mid to high intertidal zone (42-53 cm NAVD 88), successfully restored ecological function to degraded salt marshes. Additionally, salt marshes that received intermediate levels of sediment addition were more resilient than natural marshes, and maintained their resilience over time. However, all ecological functions showed a sediment addition threshold that was characterized by a decline in production and resilience and accelerated decomposition in areas of intense sediment addition, or high elevation (> 53 cm NAVD 88). The primary regulator of enhanced ecological function in the restored marshes was the alleviation of flooding stress observed in the degraded marsh.
Declines in ecological function above the sediment addition threshold were principally influenced by dry conditions that resulted from insufficient and infrequent flooding at high elevations. Therefore, the addition of intermediate levels of sediment to submerging salt marshes increases marsh surface elevation, ameliorates impacts of prolonged inundation and increases production and resilience. However, too much addition of sediment results in diminished ecological function that is equivalent to the submerged or degraded system.