Notas:

• **AquaNIC**

El Centro de Información de Acuicultura en la Red (Aquaculture Network Information Center - AquaNIC), es un acceso a los recursos electrónicos relacionados con acuicultura. AquaNIC se mantiene en la Universidad de Perdue, West Lafayette, Indiana. El acceso a AquaNIC es gratis. Usted puede ver la información de AquaNIC en el monitor de su computadora, trasvasarla por módem o recibirla por correo electrónico. AquaNIC también consta de un directorio de imágenes que contiene cientos de fotografías, videos cortos y transparencias en una variedad de formatos de imagen comunes. AquaNIC se conecta con otras bases de datos de acuicultura en el “Internet”. Puede obtener información de cómo obtener acceso AquaNIC a través de: Purdue University (http://www.anse.purdue.edu/aquanic).

• **Servicio de Listado de Productos Marinos**

Se ha establecido un buzón en el “Internet” para facilitar el intercambio de información tecnológica de productos marinos. La Alianza Nacional de HACCP en Productos Marinos envía a los suscriptores en la red información nueva sobre la implementación de HACCP de productos marinos, reuniones futuras de tecnología de productos marinos y otra información sobre tecnología de productos marinos. La suscripción es gratis y está disponible a cualquiera que tenga acceso a correo electrónico. Puede obtener información sobre el servicio de listado (“listserve”) a través de: Robert J. Price, Extension Specialist, Seafood Products, Food Science and Technology, University of California, Davis, CA 95616 (916/752-2194).

• **SeafoodNIC**

El Centro de Información de Productos Marinos en la Red (Seafood Network Information Center - SeafoodNIC) es una base de datos que contiene información sobre la Alianza Nacional de HACCP de Productos Marinos, guías y reglamentaciones de productos marinos, organizaciones de productos marinos, publicaciones de productos marinos y reuniones futuras de productos marinos. SeafoodNIC se conecta con otras bases de datos relacionados con productos marinos en el “Internet”. SeafoodNIC se mantiene en un servidor múltiple de la Universidad de California, Davis. Usted puede ver la información en el monitor de su computadora, trasvasarla o recibirla por correo electrónico. Puede obtener información sobre SeafoodNIC a través de: Robert J. Price, Extension Specialist, Seafood Products, Food Science and Technology, University of California, Davis, CA 95616 (916/752-2194) (http://www-seafood.ucdavis.edu).

• **Referencias Adicionales Importantes**

Subcommittee on Microbiological Criteria (Subcomité en Criterios Microbiológicos), Committee on Food Protection (Comité para la Protección de Alimentos), Food and Nutrition Board (Junta de Alimentos y Nutrición), National Research Council (Consejo de Investigación Nacional), NAS. 1985. “An Evaluation of the Role of Microbiological Criteria for Foods and Food Ingredients” (“Una Evaluación del Papel de los Criterios Microbiológicos en los Alimentos e Ingredientes de Alimentos”), National Academy Press.

Cómo Utilizar la Guía de Peligros y Controles de Pescado y Productos Pesqueros

Transparencia #3

<table>
<thead>
<tr>
<th>Pasos Preliminares:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Información general</td>
</tr>
<tr>
<td>• Describa el alimento</td>
</tr>
<tr>
<td>• Describa el método de distribución y almacenamiento</td>
</tr>
<tr>
<td>• Identifique el uso estimado y el consumidor</td>
</tr>
<tr>
<td>• Desarrolle un diagrama de flujo</td>
</tr>
</tbody>
</table>

Continúa
Notas:

Nota de los instructores:

Utilice el capítulo 2 de la guía para explicar el tipo de asistencia que este puede ofrecer para el desarrollo del plan. Específicamente, señale los peligros potenciales relacionados con la especie y los peligros relacionados con el procesamiento en las tablas contenidas en el capítulo 3, en los ejemplos de planes al final de cada capítulo sobre peligros y en las apéndices de la guía. Puede ser útil seleccionar un producto que sea de interés para sus estudiantes y utilizarlo en un ejemplo para demostrar el proceso.

Transparencia #4

Documento de Análisis de Peligros:
- Prepare un documento para el análisis de los peligros
- Identifique el peligros potenciales relacionados con especies
- Determine si son significativos
- Identifique puntos de control críticos

Transparencia #5

Complete la Documentación del Plan HACCP:
- Establezca los límites críticos
- Establezca procedimientos de monitoreo
 - ¿Qué?
 - ¿Cómo?
 - ¿Quién?
- Establezca procedimientos de acciones correctivas
- Establezca sistemas para mantener documentación
- Establezca procedimientos de verificación

Esta guía está diseñada para que el procesador o regulador pueda buscar la especie de pescado y la forma de producto final que le interese e identificar los posibles peligros en la seguridad de alimentos. Está estructurada de manera similar a la hoja de trabajo de análisis de peligro y el formulario del plan HACCP utilizados a través de este curso. De esta forma, se guía al usuario a través de una serie de decisiones, como: si un posible peligro es significativo; cuál es el PCC apropiado; cuáles programas de monitoreo de límites críticos, procedimientos de acción correctiva y procedimientos de verificación son apropiados; y cuál documentación es necesaria.

Las recomendaciones que se incluyen en la guía no son, en su mayoría, requisitos obligatorios de la FDA. No es mandatorio el uso de la guía en el desarrollo de los planes HACCP. La guía provee orientación útil, pero los procesadores e importadores de productos pesqueros pueden escoger otras medidas de control que provean un nivel de garantía de seguridad equivalente a los descritos en la guía. También pueden existir circunstancias en las que un peligro identificado en la guía no aplique a un producto o a las especies, por condiciones específicas del procesador.

Los peligros relacionados con la inocuidad de los alimentos pueden introducirse en un producto ya sea por su naturaleza (por ejemplo, la especie) o por la forma en que se procesa. La guía se refiere al primer tipo como peligros relacionados con la especie. Se refiere al segundo tipo como peligros relacionados con el proceso. La guía está diseñada de manera que le permite buscar la especie que le interese (entre más de 350 enumeradas) en una tabla. La tabla enumera los posibles peligros relacionados con la especie que la FDA opina que existen para cada
especie. También puede encontrar el producto final que le interese en otra tabla. Esta tabla enumera los posibles peligros relacionados al proceso que la FDA opina que existen para cada forma de producto final. Los procesadores deben controlar los dos tipos de peligros.

La guía, entonces, provee información para ayudar a los procesadores y reguladores a decidir si estos posibles peligros tienen probabilidad de ocurrir en una circunstancia específica. Además, provee información sobre cómo se puede controlar el peligro. No se intenta que estas opciones de control sean absolutas. Más bien, representan los mecanismos que la FDA conoce que pueden ser efectivos para eliminar o minimizar la posibilidad de que se desarrolle un peligro en el producto. En especial, la guía provee información sobre los límites críticos que pueden ser apropiados en ciertas circunstancias. En algunos casos, los límites críticos sugeridos se derivan de tolerancias o niveles de acción existentes. En otros casos, de revisiones que hace la FDA de literatura científica y técnica, realizada con el propósito específico de ayudar en el desarrollo y revisión de los planes HACCP.

Se le ha provisto una copia de la última edición de la guía junto con sus otros materiales de entrenamiento. Debe utilizarla como una herramienta de referencia durante los ejercicios prácticos durante el último día del curso.

Continúa
Notas:
Apéndice I: Reglamentación HACCP en Productos Pesqueros
Sub-parte A - Previsiones Generales

§ 123.3 Definiciones

Las definiciones e interpretaciones de los términos en la sección 201 del Acta Federal de Alimentos, Drogas y Cosméticos (el acta) y en la parte 110 de este capítulo se refieren a dichos términos, cuando se utilizan en esta parte, excepto cuando se les dé una definición diferente. Las siguientes definiciones también deben aplicar:

(a) Número de certificación significa una combinación única de letras y números asignada a un procesador de moluscos por una autoridad de control de mariscos.

(b) Punto crítico de control significa un punto, paso o procedimiento en un proceso de alimentos en donde pueden ejercerse acciones tendientes a prevenir, eliminar o reducir a niveles aceptables cualquier peligro relacionados con la inocuidad de los alimentos.

(c) Límite crítico significa el valor mínimo o máximo en el que un parámetro físico, biológico o químico se debe controlar en un punto crítico de control para prevenir, eliminar o reducir a niveles aceptables la incidencia del peligro identificado en la seguridad de alimentos.

(d) Pescado significa pescados de aleta de agua dulce o salada, crustáceos, otros tipos de vida animal acuática (incluso, pero no limitado a cocodrilos, ranas, tortugas acuáticas, medusas, pepinos de mar, erizos de mar y las huevas de dichos animales) sin incluir aves o mamíferos, todos los moluscos, cuando dicha vida animal sea para consumo humano.

(e) Producto pesquero significa cualquier producto alimentario humano en el que el pescado es un ingrediente característico.

(f) Peligro para la seguridad de alimentos significa cualquier propiedad biológica, física o química que pueda causar que un alimento no sea seguro para el consumo humano.

(g) Importador significa el dueño en los Estados Unidos o consignatario al momento de ingreso a los Estados Unidos, o el agente de los Estados Unidos o representante del dueño extranjero o consignatario al momento de ingreso a los Estados Unidos. Esta persona es responsable de asegurar que la mercancía que se presenta para ingresar a los Estados Unidos cumple con las leyes de importación. Para propósitos de esta definición, por lo general, el importador no es el agente de aduana, el agente de transportes, la compañía de transportes ni el representante del barco de carga.

(h) Moluscos significa cualquier especie comestible, fresca o congelada, de ostras, almejas, mejillones, ostiones, o cualquier porción comestible de dichas especies, excepto cuando el producto consta sólo del músculo aductor pelado.
(i) **Medida preventiva** significa factores físicos, químicos o de otra clase que se pueden utilizar para controlar un peligro que se ha identificado y pueda afectar a la inocuidad del alimento.

(ii) **Instrumento de monitoreo** del proceso significa un instrumento o dispositivo utilizado para indicar las condiciones durante el procesamiento en un punto crítico de control.

(k) (1) **Procesamiento** significa, cuando se refiere a pescados o productos pesqueros:
- Manejar, almacenar, preparar, descabez, evicerar,
 descascarar, congelar, cambiar a diferentes formas de mercado, manufacturar, conservar, empacar, rotular,
 descargar en el muelle o retener.

(2) La reglamentación en esta parte no aplica a:
- La cosecha o transporte de pescado o productos pesqueros, que no envuelva procesamiento.
- Prácticas como descabez, evicerar o congelar con la única intención de preparar pescado para retención en una embarcación de cosecha.
- La operación de un establecimiento de venta al por menor.

(l) **Procesador** significa cualquier persona involucrada en procesamiento comercial, particular, o institucional de pescado o productos pesqueros en los Estados Unidos o en un país extranjero. El procesador incluye cualquier persona envuelta en la producción de alimentos que serán utilizados en el mercado o en pruebas de consumidores.

(m) **Especies escombroidea formadoras de toxinas** significa atún, “bluefish”, Dorado (mahi mahi) y otras especies, aunque no pertenezcan a la familia Scombridae, en las que se pueden producir niveles significativos de histamina en el músculo del pescado por decarboxilación de histidina libre como resultado de la exposición del pescado, luego de capturado, a temperaturas que permiten el crecimiento de bacterias mesofílicas.

(n) **Tiene** se utiliza para expresar requisitos obligatorios.

(o) **Autoridad de control** de mariscos significa una agencia federal, estatal o extranjera, o un gobierno de tribu soberano, responsable legalmente de la administración de un programa que incluya actividades como la clasificación de áreas de cultivo de moluscos, velar por el cumplimiento de los controles en la cosecha de moluscos y la certificación de los procesadores de moluscos.

(p) **Shellstock** significa moluscos crudos en su concha.

(q) **Debe** se utiliza para expresar los procedimientos recomendados o aconsejables, o para identificar el equipo recomendado.

(r) **Molusco desconchado** significa moluscos sin una o ambas partes de la concha.
Notas:

(s) **Productos pesqueros ahumados o con sabor ahumado** significa el alimento terminado, preparado de una de las siguientes formas:

1. Tratar el pescado con sal (cloruro de sodio) y
2. Sometiéndolo a la acción directa de humo proveniente de madera ardiente, aserrín o cualquier material parecido y/o darle sabor ahumado utilizando medidas como la de sumergirlo en una solución de humo de madera.

(i) **Etiqueta** significa la documentación de la información de la cosecha puesta en el envase de shellstock por el cosechador o procesador.

§ 123.5 **Buenas Prácticas de Manufactura Vigentes**

(a) La parte 110 de éste capítulo se aplica para determinar si las instalaciones, métodos, prácticas y controles, utilizados para procesar el pescado y los productos pesqueros, son seguros y si estos productos se han procesado en condiciones sanitarias.

(b) El propósito de esta parte es establecer los requisitos específicos para el procesamiento de pescado y productos pesqueros.

§ 123.6 **Análisis de Peligros y Plan de Análisis de Peligros de Puntos Críticos de Control (HACCP)**

(a) **Análisis de Peligros.** Cada procesador tiene que ejecutar o haber ejecutado un análisis de peligros para determinar si hay posibilidad de que ocurran un peligro en la seguridad de alimentos, para cada tipo de pescado y producto pesquero, procesado por la empresa y para demarcarlo especie identificar las medidas preventivas que pueden utilizarse para controlar los mismos. Dichos peligros de inocuidad en los alimentos podrían ocurrir dentro y fuera del ambiente de la planta de proceso, e incluyen peligros que pueden ocurrir antes, durante y después de la cosecha. Un peligro de inocuidad en los alimentos con posibilidad razonable de ocurrencia es aquel para el que un procesador prudente establecería controles porque su experiencia, datos de enfermedades, informes científicos y otra información lo llevan a concluir que existe una probabilidad razonable de que ocurrirá en el tipo de pescado o producto pesquero que se esté procesando, si no se utilizan estos controles.

(b) **El plan HACCP.** Cada procesador tiene que tener e implementar un plan HACCP escrito siempre que un análisis de peligros demuestre una alta posibilidad de que ocurran uno o más peligros de inocuidad de los alimentos, como se describe en el párrafo (a) de esta sección. Un plan HACCP debe ser específico en cuanto a:

1. Cada localización donde el procesador procese pescado y productos pesqueros.
2. Cada tipo de pescado o producto pesquero procesado por...
el procesador. El plan puede agrupar tipos de pescado y productos pesqueros o tipos de métodos de producción, si los peligros en la seguridad de alimentos, los puntos críticos de control, los límites críticos y los procedimientos que se deben identificar y realizar, en el párrafo (c) de esta sección, son idénticos para todos los pescados y productos pesqueros agrupados o para todos los métodos de producción agrupados.

(c) **El contenido del plan HACCP.** Por lo mínimo, el plan HACCP tiene, que:

1. Enumerar los peligros de inocuidad en los alimentos con probabilidad razonable de ocurrencia, como se identifican conforme al párrafo (a) de esta sección, y que deben controlarse para cada pescado y producto pesquero. Se debe tener en consideración si existe probabilidad razonable de que ocurra algún peligro en la seguridad de los alimentos como resultado de:
 i. Toxinas naturales,
 ii. Contaminación microbiológica,
 iii. Contaminación química,
 iv. Pesticidas,
 v. Residuos de drogas,
 vi. Descomposición en las especies escombroideas formadoras de toxinas o en cualquier otra especie en la que un peligro en la inocuidad de los alimentos haya sido asociado con la descomposición,
 vii. Parásitos, donde el procesador tenga conocimiento o sospecha que un pescado o producto pesquero se consumirá sin ser procesado suficientemente para eliminar los parásitos, o cuando el procesador represente, rotule o tenga intención de que el producto se consuma crudo,
 viii. Uso no aprobado de aditivos para alimentos o colorantes directos o indirectos, y
 xi. Peligros físicos;

2. Enumerar los puntos críticos de control para cada uno de los peligros de inocuidad del alimento identificado, incluyendo cuando sea apropiado:
 i. Puntos críticos de control diseñados para controlar los peligros en la inocuidad de los alimentos que podrían introducirse en el ambiente de la planta de proceso, y
 ii. Puntos críticos de control diseñados para controlar los peligros en la inocuidad de los alimentos que podrían introducirse en el ambiente fuera de la planta de procesamiento, incluyendo los peligros en la inocuidad de los alimentos que ocurren antes, durante y después de la cosecha.

3. Enumerar los límites críticos que se deben cumplir en cada uno de los puntos críticos de control.

4. Enumerar los procedimientos, y la frecuencia de los mismos, que se utilizarán para monitorear cada punto crítico de control, para asegurar que cumplen con los límites críticos.

Continúa
Notas:

(5) Incluir cualquier plan de acción correctiva que se haya desarrollado conforme a § 123.7(b), que se deba seguir si ocurriera una desviación de los límites críticos en los puntos críticos de control.

(6) Enumerar los procedimientos de verificación, y la frecuencia de los mismos, que el procesador utilizará conforme a § 123.8(a).

(7) Proveer un sistema de documentación que evidencie el monitoreo de los puntos críticos de control. Esta documentación tiene que contener los valores reales y las observaciones obtenidas durante el monitoreo.

(d) Fecha y firma del plan HACCP.

(1) El plan HACCP tiene que estar firmado y fechado, ya sea por el individuo de más responsabilidad en el momento en la planta de procesamiento o por un oficial de alto rango del procesador. Esta firma significará que la empresa haya aceptado implementar el plan HACCP.

(2) El plan HACCP tiene que estar fechado y firmado:
(i) Al aceptarse inicialmente,
(ii) Al ser modificado y
(iii) Al verificar el plan conforme a § 123.8(a)(1).

(e) Productos sujetos a otras reglamentaciones. Para el pescado y los productos pesqueros sujetos a los requisitos de las partes 113 o 114 de este capítulo, el plan HACCP no tiene que enumerar los peligros en la seguridad de alimentos asociados con la formación de la toxina Clostridium botulinum en el envase final, herméticamente sellado, ni tiene que enumerar los controles para prevenir este peligro en la inocuidad de los alimentos. Un plan HACCP para este tipo de pescado y productos pesqueros tiene que señalar cualquier otro peligro en la inocuidad de los alimentos que tenga probabilidad razonable de ocurrencia.

(f) Sanidad. Se pueden incluir los controles de sanidad en el plan HACCP. Sin embargo, no es necesario incluirlos en el plan HACCP hasta que no se monitoreen conforme a §123.11(b) y viceversa.

(g) Base legal. Si un procesador no tiene o implementa un plan HACCP que cumpla con esta sección siempre que un plan HACCP sea necesario, de otra manera opera de acuerdo con los requisitos de esta parte, hará que el pescado o productos pesqueros de ese procesador se consideren adulterados bajo la sección 402(a)(4) del acta. Se determinará si la conducta del procesador es consistente con los métodos para garantizar la seguridad de los alimentos con una evaluación de la implementación general del plan HACCP del procesador, si se necesitara tal evaluación.

§ 123.7 Acciones Correctivas

(a) Siempre que ocurra una desviación de un límite crítico, el procesador tiene que tomar acción correctiva, sea:

(1) Siguiendo un plan de acción correctiva apropiado para la desviación particular o

(2) Siguiendo los procedimientos en el párrafo (c) de esta sección.
(b) Los procesadores pueden desarrollar planes de acción correctivas escritos, que pasan a formar parte de su plan HACCP, conforme a § 123.6 (c)(5), y con los que predeterminarán las acciones correctivas que se tomarán siempre que ocurra una desviación de un límite crítico. Un plan de acción correctiva, apropiado para una desviación en particular, es aquél que describe los pasos que se deben seguir y asigna a quién es responsable de tomar dichos pasos, para asegurar que:

1. Ningún producto perjudicial a la salud, o adulterado de otra manera, a causa de la desviación, llegue al comercio y se corrija la causa de la desviación.

(c) Cuando ocurre una desviación de un límite crítico y el procesador no tiene un plan de acción correctiva adecuado para dicha desviación, el procesador tiene que:

1. Segregar y retener el producto afectado, por lo menos hasta que se cumplan los requisitos de los párrafos (c)(2) y (c)(3) de esta sección,
2. Realizar u obtener una revisión para determinar la aceptabilidad del producto afectado para su distribución. La revisión tiene que realizarse por un individuo o individuos con entrenamiento o experiencia adecuada para realizar este tipo de revisión. El entrenamiento adecuado puede o no incluir entrenamiento conforme a §123.10,
3. Tomar acción correctiva, cuando sea necesario, con respecto al producto afectado para asegurar que ningún producto perjudicial a la salud, o adulterado de cualquier otra manera, llegue al comercio,
4. Tomar acción correctiva, cuando sea necesario, para corregir la causa de la desviación,
5. Realizar u obtener una re-evaluación oportuna por un individuo o individuos entrenados conforme a §123.10, para determinar si el plan HACCP necesita modificarse para reducir el peligro de que vuelva a ocurrir la desviación y modificar el plan HACCP como sea necesario.

(d) Todas las acciones correctivas que se tomen conforme a esta sección tienen que estar completamente documentadas y sujetas a verificación conforme a § 123.8(a)(3)(ii) y a los requisitos de documentación de § 123.9.

§ 123.8 Verificación

(a) Verificación general. Cada procesador tiene que verificar que el plan HACCP es apropiado para controlar los posibles peligros en la inocuidad de los alimentos y que se está implementando efectivamente. La verificación debe incluir, por lo menos:

1. Re-evaluación del plan HACCP. Una evaluación de que el plan es adecuado siempre que ocurra algún cambio que afecte el análisis de peligro o altere el plan HACCP de cualquier manera o, por lo menos, una vez al año. Dichos cambios pueden incluir cambios en lo siguiente: materia prima o fuente de materia prima, formulación del producto, métodos o sistemas de procesamiento, sistemas de

Continúa

159

Apéndice I
Notas:

distribución del producto final, o, el uso que tendrá o los
consumidores del producto final. La re- evaluación tiene que
ser realizada por un individuo o individuos entrenados
conforme a § 123.10. El plan HACCP tiene que
modificarse inmediatamente, cuando la re-evaluación muestre
que el plan ya no es adecuado para cumplir totalmente con
los requisitos de § 123.6(c).

(2) **Actividades continuas de verificación.**
Actividades continuas de verificación que incluyen:

(i) Revisión de cualquier queja del consumidor, recibida
por el procesador, para determinar si se relaciona con
el cumplimiento de los puntos críticos de control o si
revela la existencia de puntos críticos de control no
identificados.

(ii) La calibración de los instrumentos que monitorean el
proceso y

(iii) Como opción del procesador, realizar pruebas
periódicas del producto final o durante el proceso.

(3) **Revisión de la documentación.** Una revisión de la
documentación, que incluye firmar y fechar, realizada por
un individuo o individuos entrenados conforme a §123.10,
que evidencia:

(i) El monitoreo de los puntos críticos de control. El
propósito de esta revisión tiene que ser, por lo menos,
asegurar que la documentación esté completa y
verificar que estos evidencien valores dentro de los límites
críticos. Esta revisión tiene que realizarse a menos de
una semana del día en que se documenta,

(ii) La toma de acciones correctivas. El propósito de esta
revisión tiene que ser, por lo menos, asegurar que la
documentación esté completa y verificar que se tomaron
las acciones correctivas apropiadas conforme a
§ 123.7. Esta revisión tiene que realizarse a menos de
una semana del día en que se documenta y

(iii) La calibración de los instrumentos de control de
proceso utilizados en los puntos críticos de control y la
ejecución de cualquier prueba del producto final o
durante el proceso que sea parte de las actividades de
verificación del procesador. El propósito de estas
revisiones tiene que ser, por lo menos, asegurar que la
documentación esté completa y que éstas actividades se
realizaron conforme a los procedimientos escritos del
procesador. Estas revisiones tienen que realizarse dentro
de un tiempo razonable después de la documentación.

(b) Acciones correctivas. Los procesadores tienen que seguir
inmediatamente los procedimientos de § 123.7 siempre que un proce-
dimiento de verificación, incluso la revisión de la queja de un consumidor,
revele la necesidad de tomar acción correctiva.

(c) Re-evaluación del análisis de peligros. Cuando un procesador no
posea un plan HACCP porque el análisis de peligros haya demostrado
que no existen peligros significativos en la inocuidad de los alimentos, el
procesador tiene que re-evaluar en forma oportuna la validez del análisis
de peligros, cuando ocurra cualquier cambio que pueda afectar razonablemente la existencia de un peligro en la inocuidad de los alimentos. Estos cambios pueden incluir, pero no limitarse a, cambios en: materia prima o fuentes de materia prima, formulación del producto, métodos o sistemas de procesamiento, sistemas de distribución del producto final o el uso que tendrá o los consumidores del producto final. La reevaluación tiene que ser realizada por un individuo o individuos entrenados conforme a § 123.10.

(d) Documentación. La calibración de los instrumentos que monitorean el proceso y la ejecución de cualquier prueba periódica del producto final y durante el proceso, conforme a los párrafos (a)(2)(i) a (iii) de esta sección, tienen que ser documentados y están sujetos a los requisitos de documentación de § 123.9.

§ 123.9 Registros

(a) Requisitos generales. Toda la documentación requerida en esta parte tiene que incluir:

1. El nombre y la localización del procesador o importador,
2. La fecha y la hora de la actividad que refleja la documentación,
3. La firma o iniciales de la persona que realiza la operación y,
4. Cuando sea apropiado, la identidad del producto y el código de producción, si alguno. El procesamiento y otra información tiene que documentarse al momento de la observación.

(b) Retención de registros.

1. Toda la documentación requerida en esta parte tiene que retenese en la planta de proceso o en el lugar de negocio del importador en los Estados Unidos, por lo menos un año después de la fecha de su preparación, en el caso de productos refrigerados, y, por lo menos dos años después de la fecha de su preparación, en el caso de productos congelados, conservados o productos estables sin refrigeración.

2. La documentación relacionada con la suficiencia general del equipo o de los procesos utilizados por el procesador, incluso los resultados de estudios y evaluaciones científicas, tienen que retenese en la planta de proceso o en el lugar de negocio del importador en los Estados Unidos, por lo menos dos años después de su aplicabilidad al producto producido en las instalaciones.

3. Si se cierra la planta de proceso por largos periodos de tiempo entre empaques de temporada, o si la capacidad de almacenamiento de documentación es limitada en una embarcación de procesamiento, o en un lugar de procesamiento remoto, la documentación se puede transferir a cualquier otra localización, suficientemente accesible, al finalizar el empaque de temporada, pero se tiene que devolver inmediatamente para revisión oficial, cuando así se requiera.

Continúa
(c) Revisión oficial. Toda la documentación requerida por esta parte, y, todos los planes y procedimientos requeridos por esta parte, tienen que estar disponibles para revisión oficial y para ser copiados en un tiempo razonable.

(d) Divulgación pública.

(1) Sujeto a las limitaciones del párrafo (d)(2) de esta sección, todos los planes y documentación requeridos en esta sección no se divulgarán públicamente, a menos que se hayan divulgado al público previamente, como se define en § 20.81 de este capítulo, o se relacionen con un producto o ingrediente en desuso y ya no representen un secreto comercial o información comercial o financiera confidencial, como se define en § 20.61 de este capítulo.

(2) Sin embargo, esta documentación y estos planes podrían estar sujetos a divulgación mientras estén disponibles públicamente o no se espere que dicha divulgación cause un obstáculo competitivo, como planes HACCP genéricos, que reflejen las prácticas normales de la industria.

(c) Etiquetas. Las etiquetas, como se definen en § 123.3(t), no están sujetas a los requisitos de esta sección a menos que se utilicen para cumplir con los requisitos de § 123.28(c).

(f) Documentación en computadora. Se acepta la documentación en computadora, siempre que se implementen los controles apropiados para asegurar la integridad de los datos electrónicos y las firmas.

§ 123.10 Entrenamiento

Un individuo tiene que realizar las siguientes funciones, como mínimo, para haber completado exitosamente el entrenamiento en la aplicación de los principios HACCP para el procesamiento de pescado y productos pesqueros, al menos equivalentes a los que se reciben en un currículo standard reconocido por la Administración de Drogas y Alimentos (FDA) de los Estados Unidos, o quien, de otra manera, esté capacitado por su experiencia de trabajo para desempeñar estas funciones. La experiencia de trabajo capacitará a un individuo a desempeñar estas funciones, si el trabajo le ha provisto conocimientos, por lo menos equivalentes a los que se obtienen en un currículo standard.

(a) Desarrollar un plan HACCP, que podría incluir la adaptación de un plan HACCP modelo o genérico, adecuado para un procesador específico, de manera que se cumplan los requisitos de § 123.6(b).

(b) Re-evaluar y modificar el plan HACCP, conforme a los procedimientos de acciones correctivas especificados en § 123.7(c)(5), el plan HACCP conforme a las actividades de verificación especificadas en § 123.8(a)(1) y el análisis de peligros conforme a las actividades de verificación especificadas en § 123.8(c), y
(c) Revisar la documentación como se requiere en § 123.8(a)(3). El individuo entrenado no tiene que ser empleado del procesador.

§ 123.11 Procedimientos de Control de Sanidad

(a) Procedimientos de Operación Sanitaria Standard (SSOP). Cada procesador debe tener e implementar un procedimiento de operación sanitaria standard (SSOP) escrito o un documento similar específico para cada localización donde se produce pescado y productos pesqueros. El SSOP debe especificar cómo el procesador cumplirá con las prácticas y condiciones sanitarias que se monitorearán conforme al párrafo (b) de esta sección.

(b) Monitoreo de sanidad. Cada procesador tiene que monitorear las condiciones y prácticas durante el proceso con la frecuencia suficiente para asegurar, por lo menos, que cumplan con las condiciones y prácticas especificadas en la parte 110 de este capítulo, que sean adecuadas para la planta y los alimentos siendo procesados y que se relacionen con:

1. La seguridad del agua que entra en contacto con los alimentos o las superficies de contacto con los alimentos o que se utiliza en la manufactura de hielo.
2. Las condiciones y limpieza de las superficies en contacto con los alimentos, incluso los utensilios, guantes y vestimenta exterior.
3. La prevención de contaminación cruzada de los alimentos con objetos no sanitarios, el material de empaque del alimento y otras superficies en contacto con los alimentos, incluso los utensilios, guantes y vestimenta exterior, y entre productos crudos a productos cocidos.
4. El mantenimiento de las instalaciones de lavado de manos, higiene de manos y baños.
5. La protección de los alimentos, el material de empaque de alimento y las superficies en contacto con los alimentos contra su adulteración con lubricantes, combustible, pesticidas, limpiadores, agentes desinfectantes, condensados y otros contaminantes químicos, físicos y biológicos.
6. La rotulación almacenamiento y uso correctos de los compuestos tóxicos.
7. El control de las condiciones de salud de los empleados que podrían resultar en la contaminación microbiológica de los alimentos, materiales de empaque de alimento y las superficies en contacto con los alimentos.
8. La exclusión de plagas de la planta de alimentos.

El procesador tiene que corregir aquellas condiciones o prácticas que no se cumplan, lo antes posible.

(c) Documentación de control de sanidad. Cada procesador tiene que mantener documentación del control de sanidad que, por lo menos, evidencien el monitoreo y las correcciones prescritas en el párrafo (b) de esta sección. Esta documentación está sujeta a los requisitos de § 123.9.
(d) Relación con el plan HACCP. Se pueden incluir controles de sanidad en el plan HACCP requerido por § 123.6(b). Sin embargo, no es necesario incluirlos en el plan HACCP mientras no se monitorean conforme al párrafo (b) de esta sección y viceversa.

§ 123.12 Requisitos Especiales para los Productos Importados

Esta sección presenta los requisitos específicos para el pescado y los productos pesqueros importados.

(a) Verificación del importador. Cada importador de pescado o productos pesqueros tiene que:

(1) Obtener el pescado o los productos pesqueros de un país que tenga un memorándum de entendimiento (MOU) activo o un acuerdo similar con la Administración de Drogas y Alimentos, que cubra el pescado o los productos pesqueros, y evidencie la equivalencia o cumplimiento del sistema de inspección del país extranjero con el sistema de los Estados Unidos, refleje con precisión la situación actual entre las partes que contratan y esté funcionando y se ejecute en su totalidad, o

(2) Tener e implementar procedimientos de verificación escritos para asegurar que el pescado y los productos pesqueros que ofrecen para importación a los Estados Unidos se procesaron conforme a los requisitos de esta parte. Estos procedimientos tienen que enumerar por lo menos:

(i) Las especificaciones del producto diseñadas para asegurar que el producto no esté adulterado bajo la sección 402 del Acta Federal de Alimentos, Drogas y Cosméticos, porque puede ser perjudicial a la salud o haberse procesado en condiciones no sanitarias, y,

(ii) Los pasos afirmativos que pueden incluir cualquiera de lo siguiente:

(A) Obtener la documentación de monitoreo HACCP y sanidad, del procesador extranjero, requeridos por esta parte y que se relacionen con el lote específico de pescado o productos pesqueros ofrecidos para importación;

(B) Obtener, ya sea un certificado continuo o por lote, de una autoridad de inspección del gobierno extranjero adecuada, o de una tercera persona calificada, que certifique que el pescado o los productos pesqueros importados están o han sido procesados conforme a los requisitos de esta parte;

(C) Inspeccionar regularmente las instalaciones del procesador extranjero para asegurar que el pescado o los productos pesqueros importados se procesan conforme a los requisitos de esta parte,

(D) Mantener una copia en archivo, en inglés, del plan HACCP del procesador extranjero, y una garantía escrita del procesador extranjero de que el pescado
o producto pesquero importado se procesa conforme a los requisitos de esta parte,

(E) Examinar periódicamente el pescado o producto pesquero importado y mantener una copia en archivo, en inglés, de una garantía escrita del procesador extranjero de que el pescado o producto pesquero importado se procesa conforme a los requisitos de esta parte, u,

(F) Otras medidas de verificación, adecuadas, que provean un nivel equivalente de garantía de cumplimiento con los requisitos de esta parte.

(b) Tercera persona calificada. Un importador puede emplear una tercera persona capacitada para ayudar con o realizar cualquiera o todas las actividades de verificación especificadas en el párrafo (a)(2) de esta sección, incluso escribir los procedimientos de verificación del importador en nombre del importador.

(c) Documentación. El importador tiene que mantener documentación, en inglés, que evidencie la ejecución y los resultados de los pasos afirmativos especificados en el párrafo (a)(2)(ii) de esta sección. Esta documentación está sujeta a las previsiones de § 123.9 que apliquen.

(d) Determinación de cumplimiento. Debe existir evidencia de que todo pescado o producto pesquero que se ofrece para ingreso a los Estados Unidos ha sido procesado bajo condiciones que cumplen con esta parte. Si no se garantiza que el pescado o producto pesquero importado se ha procesado bajo condiciones equivalentes a las requeridas de los procesadores domésticos bajo esta parte, el producto se considerará adulterado y se le negará entrada.

Sub-parte B - Productos Pesqueros Ahumados o con Sabor Ahumado

§ 123.15 General

Esta sub-parte incrementa la sub-parte A de esta parte y señala los requisitos específicos para el procesamiento de productos pesqueros ahumados y con sabor ahumado.

§ 123.16 Controles de Proceso

Para cumplir con los requisitos de la sub-parte A de esta parte, los procesadores de productos pesqueros ahumados y con sabor ahumado, excepto aquellos sujetos a los requisitos de la parte 113 o 114 de este capítulo, tienen que incluir en sus planes HACCP la manera en que controlan el peligro en la inocuidad de alimentos asociado con la formación de toxinas por Clostridium botulinum por lo menos durante la vida útil del producto en condiciones de abuso normal y moderado.
Sub-parte C - Moluscos Crudos

§ 123.20 General

Esta sub-parte incrementa la sub-parte A de esta parte y señala los requisitos específicos para el procesamiento de moluscos frescos o congelados, cuando dicho procesamiento no incluya un tratamiento que asegure la destrucción de células vegetativas de microorganismos perjudiciales a la salud pública.

§ 123.8 Controles de las Fuentes

(a) Para cumplir con los requisitos de la sub-parte A de esta parte como aplican a la contaminación microbiológica, contaminación química, toxinas naturales y peligros en la seguridad de alimentos relacionados, los procesadores tienen que incluir en sus planes HACCP la manera en que controlan el origen de los moluscos que procesan, para asegurar que cumplen las condiciones de los párrafos (b), (c) y (d) de esta sección.

(b) Los procesadores tienen que procesar solamente moluscos cosechados en aguas de cultivo aprobadas para cosecha por una autoridad de control de mariscos. En el caso de moluscos cosechados en aguas federales de los Estados Unidos, los requisitos de este párrafo tendrán que cumplirse siempre y cuando no se haya cosechado el marisco en aguas cerradas por el gobierno federal para la cosecha.

(c) Para cumplir los requisitos del párrafo (b) de esta sección, los procesadores que reciben moluscos bivalvos ("shellstock") tienen que aceptarlo solamente de un cosechador que cumpla con los requisitos de licencia según apliquen a la cosecha de moluscos o de un procesador certificado por una autoridad de control de mariscos y con una etiqueta en cada envase de abastecimiento de marisco. La etiqueta tiene que incluir, como mínimo, la información requerida en § 120.60(b) de este capítulo. En lugar de la etiqueta, los cargamentos grandes de abastecimiento de mariscos pueden incluir una declaración de carga o un documento de embarque similar con la información requerida en § 120.60(b) de este capítulo. Los procesadores tienen que mantener documentación que evidencie que todo abastecimiento de mariscos cumple con los requisitos de esta sección. Tienen que documentar:

1. La fecha de la cosecha,
2. La localización de la cosecha por estado y lugar,
3. La cantidad y tipo de marisco,
4. La fecha en que lo recibe el procesador,
5. El nombre del cosechador, el nombre o número de registro de la embarcación del procesador o un número de identificación otorgado al cosechador por la autoridad de control de mariscos.

(d) Para cumplir con los requisitos del párrafo (b) de esta sección, los procesadores que reciben moluscos desconchados pueden aceptar sólo los envases de molusco desconchados que tengan una etiqueta que cumpla con § 1240.60(e) de este capítulo. Los procesadores tienen que mantener documentación que evidencie que todo el molusco desconchados cumple con los requisitos de esta sección. Tienen que documentar:
(1) La fecha de recibo,
(2) La cantidad y tipo de marisco y
(3) El nombre y número de certificación del empaqador o re-
empacador del producto.

Parte 1240 - Control de Enfermedades Transmisibles

2. La mención de autoridad para 21 CRF, parte 1240, lee como sigue:
AUTORIDAD: Secciones 215, 311, 361, 368 del Acta de Servicio de
3. La sección 1240.3 se enmienda con la revisión del párrafo (r), y
añadiendo los párrafos (s), (t) y (u) para que lea como sigue:

§ 1240.3 Definiciones Generales

(r) Molusco. Cualquier especie comestible de ostras, almejas,
mejillones y ostiones, fresca o congelada, o cualquier parte comestible de
los mismos, excepto cuando el producto consiste sólo del músculo aductor
pelado.

(s) Número de certificación significa una combinación única
de letras y números asignada a un procesador de moluscos por una
autoridad de control de mariscos.

(t) Autoridad de control de mariscos significa una agencia
federal, estatal o extranjera o un gobierno de tribu soberano, responsable
legalmente de la administración de un programa que incluya actividades
como la clasificación de áreas de cultivo de moluscos, velar por el
cumplimiento de los controles en la cosecha de moluscos y la certifica-
ción de los procesadores de moluscos.

(u) Etiqueta significa la documentación de la información de la
cosecha puesta en el envase de abastecimiento de mariscos por el
cosechador o procesador.

4. La sección 1240.60 se enmienda con la revisión del título de la
sección y volviendo a designar el texto existente como párrafo (a), y
añadiendo la palabra “molusco” después de la palabra “marisco”, las
dos veces que se utiliza, y añadiendo los párrafos (b), (c) y (d) para
que lean como sigue:

§ 1240.60 Moluscos

(b) Todo molusco bivalvos tiene que llevar una etiqueta que declare
la fecha y el lugar donde fue cosechado (estado y lugar), tipo y cantidad
de marisco, y quien lo cosechó (por ejemplo, el número de
identificación asignado al cosechador por la autoridad de control de
mariscos, cuando aplique, o, si no se le ha asignado dicho número de
identificación, el nombre del cosechador o el nombre o número de
registro de la embarcación del cosechador). En lugar de la etiqueta, los
cargamentos grandes de abastecimiento de mariscos pueden incluir una
declaración de carga o un documento de embarque similar que contenga
la misma información.

Continúa

Apéndice I
Notas:

(c) Todos los envases de moluscos pelados tienen que llevar una etiqueta que incluya el nombre, dirección y número de certificación del empaquedor o re-empaquador del molusco.

(d) Cualquier molusco que no tenga dicha etiqueta, documento de embarque o rótulo o que tenga una etiqueta, documento de embarque o rótulo que no incluya toda la información requerida en los párrafos (b) y (c) de esta sección, estará sujeto a confiscación o denegación de entrada y destrucción.
Apéndice II: Comité Asesor Nacional de Criterios Microbiológicos en los Alimentos (NACMCF) Preguntas y Ejemplos de Hojas de Trabajo
Ejemplos de Preguntas que se deben Considerar en un Análisis de Peligros

* Preguntas Adaptadas de NACMCF

A. Ingredientes

1. ¿Contiene el alimento algún ingrediente sensible que pueda representar peligros microbiológicos (por ejemplo, Salmonella, Staphylococcus aureus), peligros químicos (por ejemplo, aflatoxina, histamina, residuos de antibióticos o pesticidas, ciguatera, toxinas de mariscos) o peligros físicos (piedras, vidrio, metal)?

* 2. ¿Se utiliza agua potable en la formulación o manejo de los alimentos?

B. Factores Intrínsecos - características físicas o composición (por ejemplo, pH, tipo de acidificantes, carbohidratos fermentables, actividad del agua y conservantes de los alimentos durante y después del procesamiento.

1. ¿Cuáles factores intrínsecos de los alimentos se deben controlar para asegurar la seguridad de los alimentos?

2. ¿Permiten los alimentos que los patógenos (bacterianos) sobrevivan o se multipliquen o que se formen toxinas durante el procesamiento?

3. ¿Permitirán los alimentos que los patógenos sobrevivan o se multipliquen o que se formen toxinas en las etapas subsiguientes en la cadena de manejo de alimentos?

4. ¿Existen productos similares en el mercado? ¿Cuál ha sido el récord de seguridad de éstos productos?

C. Procedimientos utilizados en el procesamiento

1. ¿Existe una etapa que se pueda controlar en el procesamiento, que destruya los patógenos?

2. ¿Está sujeto el producto a volverse a contaminar entre el procesamiento (por ejemplo, cocción, pasteurización) y el empaque?

3. ¿Incluye el proceso etapas para remover peligros físicos o químicos?

D. Contenido bacteriano en los alimentos

1. ¿Están comercialmente estériles los alimentos (por ejemplo, alimento enlatado de baja acidez)?

2. ¿Es probable que los alimentos contengan patógenos viables formadores o no formadores de esporas?

3. ¿Cuál es el contenido bacteriano normal en los alimentos?

4. ¿Cambia la población microbiana durante el almacenamiento de los alimentos antes de su consumo?

5. ¿Alteran la seguridad de los alimentos el cambio subsiguiente en la población microbiana?

E. Diseño de las instalaciones

* 1. ¿Provee el diseño de la instalación la separación adecuada entre la materia prima y los alimentos de consumo inmediato? ¿Es esto importante para la seguridad de los alimentos?
2. ¿Se mantiene una presión positiva del aire en las áreas de empaque del producto? ¿Es esto esencial para la seguridad del producto?

3. ¿Son una fuente significativa de contaminación el patrón de tráfico de las personas y el equipo móvil?

F. Diseño del Equipo
1. ¿Proveerá el equipo de procesamiento el control de tiempo y temperatura necesarios?
2. ¿Es el equipo del tamaño correcto para el volumen de alimentos que se procesará?
3. ¿Se puede controlar el equipo lo suficiente para que las variaciones en su funcionamiento estén dentro de los límites de tolerancia requeridos para producir un producto alimentario seguro?
4. ¿Es confiable el equipo o es propenso a dañarse con frecuencia?
5. ¿Está diseñado el equipo de manera que se pueda limpiar y desinfectar?
6. ¿Existe alguna probabilidad de contaminación del producto con sustancias dañinas, como el vidrio?
7. ¿Qué mecanismos de seguridad en los productos se utilizan para mejorar la seguridad del consumidor?
 • ¿Detectores de metal?
 • ¿Imanes?
 • ¿Cedazos?
 • ¿Filtros?
 • ¿Tamices?
 • ¿Termómetros?
 • ¿Deshuesadores?
 • ¿Detectores de tapa para envases al vacío?

G. Empaque
1. ¿Afecta el método de empaque la multiplicación de patógenos microbianos o la formación de toxinas?
2. ¿Está el empaque claramente rotulado “Manténgase Refrigerado” si así se requiere por seguridad?
3. ¿Incluye el envase instrucciones para el manejo adecuado y la preparación del alimento por el consumidor?
4. ¿Es el material de empaque resistente a daño y capaz de impedir la entrada de contaminación microbiana?
5. ¿Se utiliza un tipo de empaque que haga evidente la manipulación indebida o alteración?
6. ¿Está cada envase y cada caja codificado correctamente y de manera legible?
7. ¿Está cada envase rotulado correctamente?

H. Sanidad
* 1. ¿Puede la sanidad afectar la seguridad del alimento que se procesa?
* 2. ¿Pueden limpiarse y desinfectarse la instalación y el equipo de manera que permita seguridad en el manejo de los alimentos?
* 3. ¿Es posible proveer condiciones sanitarias continuamente y adecuadamente para asegurar alimentos seguros?

Continúa
Notas:

I. Salud, higiene y educación del empleado
 * 1. ¿Puede la salud o las prácticas de higiene personal del empleado afectar la seguridad del producto que se procesa?
 2. ¿Entienden los empleados el proceso y los factores que deben controlar para asegurar la preparación de alimentos seguros?
 3. ¿Entienden los empleados que necesitan informar a la gerencia cualquier problema que pueda afectar la seguridad del alimento?

J. Condiciones de almacenamiento entre el empaque y el uso
 1. ¿Qué probabilidades tiene el alimento de almacenarse incorrectamente a la temperatura equivocada?
 2. ¿Podría un error de almacenamiento incorrecto conllevar un peligro microbiológico en el alimento?

K. Uso del alimento
 1. ¿Calentará el consumidor el alimento?
 2. ¿Quedaran sobras?

L. Consumidor del alimento
 1. ¿Será el alimento para el consumidor general?
 2. ¿Consumirá el alimento una población con mayor susceptibilidad a enfermedades (por ejemplo, niños, ancianos, enfermos, personas con sistemas inmunos débiles)?

* Si estos puntos son críticos en la manufactura de alimentos seguros, sería más apropiado que los procesadores los señalaran en un programa de sanidad pre-requisito.
<table>
<thead>
<tr>
<th>(1) Ingrediente/ etapa de Proceso</th>
<th>(2) Identifique cualquier peligro potencial introducido, controlado o aumentado en esta etapa</th>
<th>(3) ¿Existen algún peligro potencial significativo? (Sí/No)</th>
<th>(4) Justifique su decisión en la columna 3</th>
<th>(5) ¿Qué medidas preventivas se pueden aplicar para prevenir los peligros significativos?</th>
<th>(6) ¿En esta etapa un punto crítico de control? (Sí/No)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOLOGICO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QUIMICO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FISICOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOLOGICO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QUIMICO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FISICOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOLOGICO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QUIMICO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FISICOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOLOGICO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QUIMICO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FISICOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOLOGICO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QUIMICO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FISICOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOLOGICO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) Punto Crítico de Control (PCC)</td>
<td>(2) Peligros Significativos</td>
<td>(3) Límites Críticos Para Cada Medida Preventiva</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-----------------------------</td>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(*Tabla incompleta*)
Apéndice III: Peligros en Productos Pesqueros
Notas:

Transparencia 1

Objetivo:
En este módulo, usted aprenderá:
- La identidad y características de los peligros de seguridad biológicos, físicos y químicos identificados comúnmente con productos pesqueros.
- Las medidas de control para los peligros en productos pesqueros.

Peligros Biológicos

Los peligros de seguridad biológicos encontrados comúnmente en productos pesqueros incluyen patógenos bacterianos, patógenos virales, y parasitos.

- **Patógenos Bacteriano**

El crecimiento de patógenos es, frecuentemente, un factor importante en enfermedades provenientes de alimentos.

Transparencia 2

Patógenos Bacterianos:
- *Campylobacter jejuni*
- *Clostridium botulinum*
- *Escherichia coli* patógeno
- *Listeria monocytogenes*
- *Salmonella* spp.
- *Shigellaspp.*
- *Staphylococcus aureus* patógeno
- *Vibrio cholerae*
- *Vibrio parahaemolyticus*
- *Vibrio vulnificus*
- *Yersinia enterocolitica*

Campylobacter jejuni

C. jejuni se encuentra a menudo en el tracto intestinal de aves, ganado y animales domésticos de sangre caliente. Es una causa muy común e importante de enfermedades diarreicas en humanos. Los síntomas incluyen diarreas profusas (algunas veces sanguinolentas), dolor abdominal (la intensidad y duración pueden ser algo severas), dolor de cabeza, debilidad y fiebre. Muchas infecciones ocurren sin síntomas. *C. jejuni* se transmite a través de: alimentos contaminados, incluso almejas, ostras y mejillones crudos; contacto entre personas y agua contaminada. La ruta más frecuente de transmisión puede ser la contaminación cruzada de los alimentos al tener contacto con superficies contaminados con alimentos sucios.
Los peligros de *C. jejuni* se pueden controlar cocinando los productos pesqueros completamente y enfatizando la importancia de la limpieza e higiene adecuada (y frecuente) de manos y equipo, y de las prácticas sanitarias de manejo de alimentos. Como se piensa que la dosis de infección de *C. jejuni* es pequeña, el abuso del tiempo y la temperatura de los productos de alimentos puede resultar en esta enfermedad.

Clostridium botulinum

C. botulinum se encuentra por el medioambiente y ha sido aislado de la tierra, la agua, las verduras, las carnes, los productos lácteos, los sedimentos del océano, el tracto intestinal de pescados y de las agallas y vísceras de cangrejos y otros productos pesqueros. *C. botulinum* es una bacteria formadora de esporas que crece en ausencia de aire. Estas características le permiten sobrevivir las temperaturas normales de cocción y crecer en ambientes de empaqueo al vacío y de atmósfera modificada. *C. botulinum* produce una poderosa neurotoxina que causa botulismo. *C. botulinum* necesita crecer para producir la toxina. Los síntomas incluyen diarrea, vómitos, dolor abdominal, náusea y debilidad. A estos síntomas le siguen visión doble y nublada y pupilas dilatadas y fijas. En casos severos, la parálisis de los músculos de respiración pueden causar la muerte.

El tipo de *C. botulinum* de Tipo E, más frecuente en pescados y productos pesqueros, es de particular importancia porque crece a temperaturas tan bajas como 38 F y casi no produce evidencia de deterioro. *C. botulinum* de Tipo A es la forma de esta bacteria que es más común en los productos agrícolas. Es un contaminante común en el equipo de procesamiento. No crece en temperaturas menores de 50 F y produce un olor a podrido en los productos en los que crece. Sin embargo, sus esporas son mucho más resistentes al calor que la forma del Tipo E de la bacteria.

Como *C. botulinum* produce esporas resistentes al calor y requiere la ausencia de oxígeno para crecer, el botulismo ha sido asociado mayormente con alimentos enlatados de manera inadecuada (por lo general enlatados en la casa). También se han identificado como causantes de botulismo productos pesqueros semi-conservados, incluso el pescado ahumado, salado y fermentado.

Los peligros de *C. botulinum* se pueden controlar inhibiendo el crecimiento de la bacteria o destruyéndola en los productos pesqueros. Los procesos térmicos adecuados para los productos pesqueros enlatados destruyen la bacteria. Salar o deshidratar lo suficiente para reducir la actividad de agua a menos de 0.93 y la fermentación o acidificación a menos de pH 4.7 son formas efectivas de evitar el crecimiento de *C. botulinum*. Mantener las temperaturas adecuadas para el almacenamiento, por sí solo, no se considera una medida de control adecuada para *C. botulinum* de Tipo E, debido a su habilidad para crecer a temperaturas bajas y por la gravedad de la enfermedad. Sin embargo, en muchos productos, es una barrera secundaria importante para el crecimiento.
Notas:

Escherichia coli

E. coli ocurre de forma natural en el tracto intestinal de los animales, incluso el hombre. La mayoría de las formas de la bacteria no son patógenas y cumplen funciones importantes en el intestino. Las cepas patógenas de *E. coli* se transfieren a los productos pesqueros por la contaminación del ambiente costero con aguas residuales o por la contaminación después de la cosecha. La infección de alimentos con *E. coli* causa dolor abdominal, diarrea aguada o sanguinolenta, fiebre, náusea y vómitos.

Los peligros de *E. coli* se pueden prevenir calentando los productos pesqueros lo suficiente para destruir la bacteria, manteniendo los alimentos fríos a menos de 40 F, impidiendo la contaminación cruzada después de la cocción del alimento y prohibiéndole a las personas enfermas que trabajen en las operaciones de alimentos. La dosis de infección de *E. coli* depende de la cepa, es desde unos pocos organismos hasta millones. Por esta razón el abuso en el tiempo/temperatura de los productos alimenticios puede, o no, ser necesario para causar la enfermedad.

Listeria monocytogenes

L. monocytogenes está diseminada en la naturaleza y se ha aislado de la tierra, la vegetación, los sedimentos marinos y el agua. A principios de los años 1900, *L. monocytogenes* se reconoció como una bacteria que causaba enfermedades en los animales de granja. Más recientemente, se ha identificado como la causa de listeriosis en humanos. La mayoría de las personas saludables, o no se afectan con *L. monocytogenes*, o padecen síntomas leves parecidos a los de la gripe. Las víctimas de listeriosis severa son, por lo general, personas con el sistema inmunológico débil. Las personas con mayor riesgo son: pacientes de cáncer, individuos que toman drogas que afectan el sistema inmunológico, mujeres embarazadas, personas con baja acidez estomacal e individuos con SIDA. La listeriosis severa puede causar meningoitis, abortos, septicemia y otras complicaciones que pueden causar la muerte.

La mayor amenaza de listeriosis está en los productos de consumo inmediato, que no requieren cocción adicional. La industria de alimentos no se preocupa tanto por *L. monocytogenes* en los alimentos crudos, que se cocinarán antes de ser consumidos, ya que la bacteria se destruye al cocinar el alimento. *L. monocytogenes* se ha aislado del pescado crudo, los cangrejos cocidos, los camarones crudos y cocidos, la langosta cruda, el “surimi” y el pescado ahumado. Una de sus características más importantes es su habilidad para crecer en temperaturas tan bajas como 36 F.

Los peligros de *L. monocytogenes* se pueden prevenir cocinando los alimentos completamente e impidiendo la contaminación cruzada, una vez se han cocinado los productos pesqueros. Como se piensa que la dosis de infección de *L. monocytogenes* es pequeña, el abuso en el tiempo/temperatura de los productos alimenticios no necesariamente causa enfermedad.
Salmonella spp.

Salmonella ocurre de manera natural en el tracto intestinal de los mamíferos, pájaros, anfibios y reptiles, pero no en los pescados, crustáceos o moluscos. La Salmonella se transfiere a los productos pesqueros por la contaminación del ambiente costero con aguas residuales o por la contaminación después de la cosecha.

La infección de alimentos con Salmonella causa náusea, vómitos, dolor abdominal y fiebre. Brotes de infección de alimentos con Salmonella han sido asociados a ostras crudas, salmón, ensalada de atún, cóctel de camarones, lenguado estofado y pescado relleno.

Los peligros de Salmonella se pueden prevenir calentando los productos pesqueros lo suficiente para destruir la bacteria, manteniendo los productos pesqueros fríos a temperaturas menores de 40 F, impidiendo la contaminación cruzada después de la cocción del alimento y prohibiéndole a las personas enfermas o portadoras de Salmonella que trabajen en operaciones de alimentos. Se piensa que la dosis de infección de Salmonella es extremadamente variable, relativamente alta para individuos saludables y muy baja para individuos de alto riesgo, tales como los ancianos o personas con problemas médicos. Por esta razón, puede que resulte la enfermedad, aún sin el abuso en el tiempo/temperatura, pero el abuso ha sido un factor contribuyente en muchos brotes.

Shigella spp.

Shigella ocurre de manera natural en el tracto intestinal de los humanos. La Shigella se transfiere a los productos pesqueros por la contaminación del ambiente costero con aguas residuales o por la contaminación después de la cosecha. La Shigella produce una enfermedad llamada Shigellosis, que causa diarreas leves, fiebre, dolor abdominal y la pérdida severa de líquidos.

Los peligros de Shigella se pueden prevenir eliminando la contaminación de los suministros de agua con desperdicios humanos y mejorando la higiene personal de las personas enfermas o portadores de Shigella que trabajan en operaciones de alimentos.

Staphylococcus aureus

Los humanos y los animales son la mayor reserva de S. aureus. S. aureus se puede encontrar en la nariz y garganta, y en el pelo y la piel, del 50 por ciento de los individuos saludables. Sin embargo, la bacteria se puede encontrar en el aire, polvo, alcantarillado y en las superficies del equipo de procesamiento de alimentos. S. aureus puede producir una toxina si se le permite el crecimiento en los alimentos. La toxina no se puede destruir con los procesos de cocción o enlatado. S. aureus tiene la habilidad de crecer en alimentos con muy poca agua disponible (0.86%, 18 porciento de sal), lo que podría evitar el crecimiento de otros patógenos.

Continúa
El envenenamiento con alimentos que contienen *S. aureus* causa náusea, vómitos, dolor abdominal, diarrea aguada o sanguinolenta y fiebre.

Los peligros de *S. aureus* se pueden prevenir minimizando el abuso en el tiempo/temperatura de los productos pesqueros, especialmente después de cocidos, y requiriendo que las personas a cargo del manejo de los alimentos tengan una higiene adecuada.

Vibrio cholerae

V. cholerae se encuentra en estuarios, bahías y aguas salobres. Ocurre de manera natural y no se relaciona necesariamente con la contaminación por aguas residuales. *V. cholerae* tiende a ser más numeroso en el ambiente durante los meses más calientes.

Existen varios tipos de *V. cholerae* y producen síntomas muy diferentes. Uno de estos tipos, *Vibrio cholerae* 01, causa, inicialmente, molestias abdominales y diarreas leves. A medida que la enfermedad progresa, los síntomas pueden incluir: diarrea aguada, dolor abdominal, vómitos y deshidratación. Puede causar la muerte. La propensión a cólera es mayor en personas que han sido sometidas a cirugía gástrica, que toman antiácidos o que tienen sangre tipo O. Se han asociado brotes de este tipo de cólera con ostras, cangrejos y camarones del Golfo de México. También se ha encontrado *V. cholerae* 01 en las aguas de la Bahía Chesapeake, aunque no se ha reportado la enfermedad en esta área.

Otro tipo de *V. cholerae*, no-01, causa diarrea, dolor abdominal y fiebre. También se han reportado náusea, vómitos y diarrea sanguinolenta. La severidad de los síntomas depende, en parte, de la cepa específica. En su forma más severa, *V. cholerae* no-01 ha resultado en septicemia (envenenamiento de la sangre) en individuos con condiciones médicas que debilitan el sistema inmunológico. La enfermedad se ha visto asociada con el consumo de ostras crudas, pero también se ha encontrado la bacteria en cangrejos.

Los peligros asociados con *V. cholerae* 01 se pueden prevenir cocinando los productos pesqueros completamente y evitando la contaminación cruzada, una vez los productos pesqueros están cocidos. La congelación no destruye la bacteria.

Vibrio parahaemolyticus

V. parahaemolyticus ocurre de manera natural en los estuarios y otras áreas costeras en casi todo el mundo. En la mayorís de los lugares *V. parahaemolyticus* es más numeroso en el ambiente durante los meses de más calor y, como resultado, la mayorís de los brotes en los Estados Unidos ocurre en el verano.

Los síntomas más comunes relacionados con *V. parahaemolyticus* incluyen diarrea, dolor abdominal, náusea, vómitos y dolor de cabeza. Se han reportado síntomas de fiebre y escalofríos, pero con menos frecuencia. La enfermedad se ha visto asociada con el consumo de cangrejos, ostras, camarones y langosta contaminados.
Los peligros de *V. parahaemolyticus* se pueden controlar cocinando completamente los productos pesqueros e impidiendo la contaminación cruzada después de cocinarlos. Por su dosis de infección alta, el control de abuso en el tiempo/temperatura es una medida preventiva importante.

Vibrio Vulnificus

V. vulnificus es una bacteria marina que ocurre de manera natural. *Vibrio vulnificus* requiere la presencia de sal para sobrevivir y es comúnmente aislado en una salinidad de 7 a 16 ppm. Se encuentra principalmente en el Golfo de México, pero se ha aislado también de los océanos Atlántico y Pacífico. El número de bacterias en el ambiente es más alto durante los meses más calientes de abril a octubre.

Los síntomas más comunes incluyen: lesiones en la piel, choque séptico, fiebre, escalofríos y náusea. Se han reportado con menos frecuencia dolor abdominal, vómitos y diarrea. La muerte ocurre en casi el 50 por ciento de los casos. Ciertas condiciones médicas hacen al individuo más propenso a las efectos letales de esta bacteria, incluso enfermedades del hígado, abuso de alcohol, cáncer, diabetes, enfermedad crónica del riñón, uso de esteroides o drogas inmunosupresivas, baja acidez estomacal y SIDA. Se ha asociado la sepsis debida a *V. vulnificus* con el consumo de ostras, almejas y cangrejos azules.

Los peligros de *V. vulnificus* se pueden controlar cocinando completamente los productos pesqueros y evitando la contaminación cruzada una vez el producto pesquero esté cocido. El peligro de infección con *V. vulnificus* también se puede reducir refrigerando rápidamente las ostras de la Costa del Golfo durante los meses calientes. Los individuos en los grupos de “alto riesgo” no deben consumir moluscos crudos.

Yersinia enterocolítica.

Y. enterocolitica ocurre de manera natural en la tierra, el agua y en los animales domésticos y salvajes. La yersiniosis causa diarrea, vómitos, dolor abdominal y fiebre, a menudo parecida a la apendicitis. Se han asociado brotes de esta enfermedad con ostras y pescado.

Los peligros de *Y. enterocolitica* se pueden prevenir calentando los productos pesqueros lo suficiente para destruir la bacteria, manteniendo los productos pesqueros fríos a menos de 40°F e impidiendo la contaminación cruzada después de la cocción del alimento.

Patógenos virales

Transparencia #3

<table>
<thead>
<tr>
<th>Patógenos virales:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virus de Hepatitis A</td>
</tr>
<tr>
<td>Virus Norwalk</td>
</tr>
</tbody>
</table>

Continúa
Notas:

Virus de Hepatitis A

Los virus sobreviven mejor en temperaturas bajas y se destruyen en temperaturas altas. Como resultado, la mayoría de los brotes de hepatitis ocurren durante los meses de invierno y principios de la primavera. Los virus pueden sobrevivir por largos períodos de tiempo en agua salada y se ha demostrado que pueden sobrevivir por más de un año en sedimentos pesqueros.

Tanto las almejas crudas y cocidas al vapor, ostras y mejillones han sido responsables de brotes de hepatitis A, incluso mariscos de aguas de cosecha aprobadas. Los síntomas de hepatitis A incluyen debilidad, fiebre y dolor abdominal. A medida que la enfermedad progresa, el individuo por lo general, muestra señales de ictericia. La enfermedad puede ser desde muy leve (los niños por lo general no tienen síntomas) a muy severa, lo que requiere hospitalización. El porcentaje de muertes es bajo, y las muertes ocurren principalmente en ancianos y en individuos con otras enfermedades.

Los peligros de Hepatitis A se pueden prevenir cocinando completamente los alimentos y evitando la contaminación cruzada de productos pesqueros cocidos. Pero la hepatitis A parece ser más resistente al calor que otros virus. Un estudio de laboratorio demostró que los virus de hepatitis A en ostras infectadas se inactivaron después de calentarlo a 140°F por 19 minutos. De esta manera, los moluscos que se cocinan al vapor sólo hasta que se abre la concha (una práctica común de cocina) no están expuestos al calor lo suficiente para inactivar los virus de hepatitis A.

Virus Norwalk

El virus Norwalk se considera la mayor causa de enfermedad intestinal no bacteriológica (gastroenteritis). De 1976 a 1980 el CCE informó que el 42 porciento de los brotes de gastroenteritis no bacteriológica fueron causados por el virus Norwalk.

Se ha asociado la enfermedad del virus Norwalk con el consumo de almejas (crudas o cocidas al vapor), ostras y berberechos. El virus Norwalk causa náusea, vómitos, diarrea, dolor abdominal y, ocasionalmente, fiebre en humanos.

Los peligros del virus Norwalk se pueden prevenir cocinando los productos pesqueros completamente y evitando la contaminación cruzada. Además, un brote reciente demostró que controlando el vertido de las aguas residuales por las bordas en las embarcaciones que cosechan productos pesqueros, reduciría la incidencia de enfermedades relacionadas con el virus Norwalk.
- **Parásitos**

Transparencia #4

<table>
<thead>
<tr>
<th>Parásitos:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anisakis simplex</td>
</tr>
<tr>
<td>Pseudoterranova decipiens</td>
</tr>
<tr>
<td>Diphyllobothrium latum</td>
</tr>
</tbody>
</table>

Anisakis simplex

Anisakis simplex, conocido comúnmente como lombriz de arenque, es un nemátodo parásito o ascáride. Sus huéspedes finales son los delfines, marsopas y calamares. La fase de larva (vermiforme) en pescados y calamares es por lo general de 18 a 36 milímetros de largo, de 0.24 a 0.69 milímetros de ancho y de color rosado a blanquecino.

Anisakiasis, la enfermedad humana causada por *Anisakis simplex*, está asociada con el consumo de pescado crudo (sushi, sashimi, lomi lomi, ceviche, sunomono, arenque verde holandés, pescados marinados y pescado ahumado en frío) o pescado sin suficiente cocción.

Los parásitos en el pescado se consideran un peligro, sólo en el caso que el procesador sabe o sospeche que será consumido crudo o sin cocción completa. En otros productos, los parásitos se consideran como suciedad, pero no como peligro. La FDA ha establecido dos procesos de congelación para destruir los parásitos, congelación rápida a -35 C (-31 F) o menos y congelación a -20 C (-4 F) o menos, por 168 horas (7 días).

Pseudoterranova decipiens

Pseudoterranova decipiens, comúnmente llamado “lombriz de bacalao” o “lombriz de foca”, es otro nemátodo parásito o ascáride. Los huéspedes finales de *Pseudoterranova* son la foca gris, la foca de bahía, el lobo marino y la morsa. La etapa de larva en el pescado es de 5 a 58 milímetros de largo, 0.3 a 1.2 milímetros de ancho y de color amarillento, parduzco o rojizo.

Estos nemátodos están relacionados con *Anisakis simplex* y la enfermedad asociada con su infección se llama también anisakiasis. Estos nemátodos también se transmiten a los humanos por el consumo de pescado crudo o sin cocción suficiente. El control de *Pseudoterranova* es el mismo que el de *Anisakis simplex*.

Diphyllobothrium latum

Diphyllobothrium latum es un céstodo, o tenia, que infecta con parásitos a una variedad de mamíferos que comen pescado en las latitudes del norte. Una especie similar se encuentra en las latitudes del sur y está asociada con las focas como huésped. Los céstodos tienen una estructura que les permite adherirse a la pared intestinal de su huésped y tienen cuerpos segmentados. Las larvas de los céstodos en el pescado varían de...
Notas:

desde unos pocos milímetros a varios centímetros de largo y son de color blanco o gris.

Las tenias *Diphyllobothrium* infectan principalmente al pescado de agua fresca. Pero el salmón y otros pecesidos relacionados, también pueden llevar el parásito. Las tenias de *Diphyllobothrium* se encuentran, por lo general, en forma no enquistada y enroscadas en la musculatura o enquistadas en las vísceras. Estas tenias pueden madurar y causar enfermedades a los humanos. Estos cestodos también se transmiten a los humanos por el pescado crudo o sin cocción completa. El control de *Diphyllobothrium latum* es el mismo que para *Anisakis simplex*.

Peligro Químicos

- **Biotoxinas Marinas**

Las biotoxinas marinas (toxinas naturales) representan una amenaza significativa a la salud humana cuando las personas consumen pescado y productos pesqueros contaminados con las mismas. Las biotoxinas marinas comprenden una amplia variedad de compuestos, todos producidos por especies de alga marina que ocurren de manera natural. Las algas están al final de la cadena alimenticia del océano. Por consiguiente, las biotoxinas producidas por algunas algas son recolectadas y concentradas en los niveles de la cadena (por ejemplo, moluscos, crustáceos y peces de aleta) y, finalmente, consumidos por humanos.

Hay cinco biotoxinas marinas reconocidas en los Estados Unidos: envenenamiento paralítico, de neurotoxina, diarréico y amnésico por mariscos, y envenenamiento de ciguatera por pescado. Las agencias de control de mariscos del estado clasifican las aguas de moluscos para reducir el peligro de que los moluscos porten estas toxinas en los canales comerciales. Los procesadores deben obtener moluscos sólo en aguas aprobadas para la cosecha.

Transparencia # 5

<table>
<thead>
<tr>
<th>Toxinas Marinas</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Envenenamiento Amnésico por Mariscos (EAM)</td>
</tr>
<tr>
<td>- Envenenamiento Diarréico por Mariscos (EDM)</td>
</tr>
<tr>
<td>- Envenenamiento Neurotóxico por Mariscos (ENM)</td>
</tr>
<tr>
<td>- Envenenamiento Paralítico por Mariscos (EPM)</td>
</tr>
<tr>
<td>- Envenenamiento Ciguatera por Pescado (ECP)</td>
</tr>
<tr>
<td>- Gemilotoxina</td>
</tr>
<tr>
<td>- Toxina Escombroida</td>
</tr>
<tr>
<td>- Tetrodotoxina</td>
</tr>
</tbody>
</table>

La FDA ha establecido niveles de acción para todas las biotoxinas marinas, excepto para ECP. Ninguna de estas toxinas se puede destruir totalmente con los procesos normales de cocción, congelación, salado, acidificación o ahumado. Sin embargo, hay evidencia de que los niveles de EPM, y quizás los niveles de otras toxinas de mariscos, se pueden reducir a niveles seguros con procedimientos de enlatado comercial.
Envenenamiento Amnésico por Mariscos (EAM)

EAM es causado por moluscos contaminados, principalmente del Noreste y Noroeste de los Estados Unidos e importaciones de climas similares. El marisco se contamina con ácido domónico, producido por un crecimiento denso de un alga del género *Pseudonitzschia*. Debemos asumir que todos los moluscos que se alimentan por filtración son capaces de acumular ácido domónico. Sin embargo, el único marisco que se ha visto implicado en casos de EAM ha sido el mejillón. EAM se ha identificado recientemente como un problema en las vísceras de cangrejos "Dungeness" y de anchoas de la costa Oeste de los Estados Unidos.

En las primeras etapas de EAM, el individuo por lo general experimenta molestias intestinales. EAM severo puede causar muecas faciales o movimientos de masticación, pérdida de memoria a corto plazo y dificultad al respirar. Puede causar la muerte.

Envenenamiento Diarreico por Mariscos (EDM)

EDM es causado por moluscos contaminados, principalmente del Noreste y Noroeste de los Estados Unidos e importaciones de climas similares. Los moluscos que se alimentan por filtración pueden acumular toxinas, aún en concentraciones de algas menores que la necesaria para decolar el agua. Los mejillones, ostras, almejas, duras y de concha suave, se han visto implicadas en casos de EDM. Ostiones contaminados han causado casos de EDM en Japón, pero la probabilidad de que los ostiones causen enfermedades en este país es muy poca porque las huevas de ostiones por lo general no se consumen en los Estados Unidos. Un número de especies de algas de los géneros *Dinophysis* y *Prorocentrum* se han visto asociados con EDM. Estas algas son responsables de la producción de ciertas toxinas (ácido okadáico y sus derivados).

Los síntomas de envenenamiento diarreico por mariscos son diarrea, náusea, vómitos, dolor y calambre abdominal, de moderado a severo, y escalofríos. No se sabe de ninguna muerte y se espera una recuperación total en tres días, con o sin ayuda médica.

Envenenamiento Neurotóxico por Mariscos (ENM)

A mediados de los años 1960 se identificó, por primera vez, *Gymnodinium breve* como causante de ENM. El florecimiento de esta alga resulta, por lo general, en la muerte del pescado y puede hacer que el marisco sea tóxico para los humanos. El florecimiento comienza generalmente en alta mar y se mueve hacia la costa. *G. breve* produce tres toxinas reconocidas (brevetoxinas).

ENM es causado por mariscos contaminados del Sudeste. Los únicos mariscos asociados con la enfermedad ENM son las almejas y las ostras. Sin embargo, todos los moluscos que se alimentan por filtración son capaces de acumular toxinas neurotóxicas de mariscos.

ENM es parecido a un caso leve de ciguatera o ECP. Los síntomas comienzan a las tres horas de haber consumido el marisco contaminado e incluyen: hormigueo en la cara que se riega a otras partes del cuerpo,

Continúa
sensación de frío a calor y de calor a frío, dilatación de las pupilas y una sensación de embriaguez. Con menos frecuencia, las víctimas pueden experimentar: diarreas prolongadas, náusea, poca coordinación y ardor en el recto.

Envenenamiento Paralítico por Mariscos (EPM)

Hay muchas especies de algas tóxicas que causan envenenamiento paralítico por mariscos. Estas incluyen algas de los géneros *Alexandrium*, *Pyrodinium* y *Gymnodinium*. EPM puede ser causado por una combinación de cualquiera de 18 toxinas (saxitoxinas), depende de la especie de alga, el área geográfica y el tipo de marisco.

EPM es causado por mariscos contaminados, principalmente del Noreste y Noroeste de los Estados Unidos e importaciones de climas similares. Todos los moluscos que se alimentan por filtración acumulan toxinas paralíticas de mariscos. Los mejillones llegan a ser muy tóxicos al estar expuestos al organismo, desde unas pocas horas hasta unos pocos días, pero también pierden su carga tóxica rápidamente. Por lo general, las almejas y las ostras no llegan a ser tan tóxicas como los mejillones. Requieren más tiempo para acumular niveles altos de toxinas y también requieren más tiempo para limpiarse de las mismas. Las vieiras pueden ser extremadamente tóxicas, aún durante periodos sin florecimiento evidente. Sin embargo, las vieiras no representan una amenaza de EPM porque el músculo aductor, es la única parte que se consume en occidente, no acumula la toxina. EPM se ha reportado recientemente en el hígado de pez sierra (caballa) del Atlántico.

Los síntomas de EPM comprenden, inicialmente, adormecimiento y sensación de ardor u hormigueo de los labios y la lengua, que se extiende a la cara y a la punta de los dedos. Esto lleva a una pérdida general de coordinación en los brazos, piernas y cuello. También existe una variedad de otros síntomas que no se reportan comúnmente. Casos severos de EPM han resultado en parálisis respiratoria y la muerte.

Envenenamiento de Ciguatera por Pescado (ECP)

Algunas especies de pescados tropicales y subtropicales pueden ser tóxicos para los humanos por comer alga tóxica. La especie de alga asociada mayormente con EPC es *Gambierdiscus toxicus*, pero, en ocasiones, otras se han visto asociadas. Las poblaciones de algas tóxicas tienden a fluctuar, influyéndolas por la turbidez y el contenido de nutrientes en el agua. Existen, por lo menos, cuatro toxinas reconocidas que se concentran en las vísceras, cabeza o sistema nervioso central del pescado afectado. La toxina principal es ciguatoxina.

EPC es transmitido a los humanos por pescados de aleta contaminados, de la región más sudeste de los Estados Unidos, Hawaii y los trópicos a través del mundo (entre las latitudes 35N y 34S). En las regiones del sur de la Florida, Bahamas y el Caribe, la picua (barracuda), el medregal (amberjack), jurel ojon (horse eye jack), jurel negro (black jack) y otras especies grandes de jureles, pargos tienen probabilidad de portar ciguatoxina. También se puede sospechar de muchas otras especies de