Orrin H. Pilkey, Jr., Dinesh C. Sharma, Harold R. Wanless, Larry J. Doyle, Orrin H. Pilkey, Sr., William J. Neal, and Barbara L. Gruver
Living with the East Florida shore
Living with the shore

Series editors
Orrin H. Pilkey, Jr.
William J. Neal

The beaches are moving: the drowning of America's shoreline,
new edition
Wallace Kaufman and Orrin H. Pilkey, Jr.

Living with the West Florida shore
Larry J. Doyle, Dinesh C. Sharma, Albert C. Hine, Orrin H. Pilkey, Jr.,
William J. Neal, Orrin H. Pilkey, Sr., and Daniel F. Belknap

Living with the Alabama-Mississippi shore

Living with the Louisiana shore
Joseph T. Kelley, Alice R. Kelley, Orrin H. Pilkey, Sr., and Albert A. Clark

Living with the Texas shore
Robert A. Morton, Orrin H. Pilkey, Jr., Orrin H. Pilkey, Sr., and William J. Neal
Living with the East Florida shore

Orrin H. Pilkey, Jr.
Dinesh C. Sharma
Harold R. Wanless
Larry J. Doyle
Orrin H. Pilkey, Sr.
William J. Neal
Barbara L. Gruver

Duke University Press Durham, North Carolina 1984
The publication of this book was supported by a grant from the Florida Coastal Management Office.

Publication of the various volumes in the Living with the Shore series has been greatly assisted by the following individuals and organizations: the American Conservation Association, an anonymous Texas foundation, the Charleston Natural History Society, the Coastal Zone Management Agency (NOAA), the Geraldine R. Dodge Foundation, the Federal Emergency Management Agency, the George Gund Foundation, the Mobil Oil Corporation, Elizabeth O'Connor, the Sapelo Island Research Foundation, the Sea Grant programs of North Carolina, Florida, Mississippi/Alabama, and New York, The Fund for New Jersey, M. Harvey Weil, and Patrick H. Welder, Jr. The Living with the Shore series is part of the Duke University Program for the Study of Developed Shorelines.
Contents

| List of figures and tables | ix |
| Foreword | xiii |

1. Highway A1A—the road to riches 3
 - The stormy past 6
 - Where would you want your parents to live? 9

2. How the shoreline works 12
 - Barrier islands: where they come from 12
 - The operation of barrier islands 14
 - Islands on the move 14
 - The accelerating rise in sea level 14
 - Barrier island migration 16
 - Front side moves back by erosion 20
 - Back side moves back by growth 20
 - The island maintains its elevation during migration 21
 - Size and shape of barrier islands 22
 - Barrier island environments 23
 - Beaches: the dynamic equilibrium 25
 - The beach quiz 26
 - How does the beach respond to a storm? 26
 - How does the beach widen or build seaward? 28
 - Where does the beach sand come from? 28

3. Shoreline engineering: the impossible dream 35
 - Stabilizing the unstable 37
 - Beach replenishment (nourishment) 37
 - Groins and jetties 42
 - Seawalls 46
 - Sea-level rise: built in obsolescence 50
 - Questions you should ask, or how to talk to your consultant 50
 - A philosophy of shoreline conservation: “We have met the enemy and he is us” 51
 - Truths of the shoreline 52

4. Selecting a site on an East Florida beach 56
 - Nature’s clues to dangers at the beach 56
 - Why worry? 56

Where do seashells come from? 29
Why do beaches erode? 29
Are the shorelines on the back sides of our islands eroding? 31
What can I do about my eroding beach? 31
If most ocean shorelines are eroding, what is the long-range future of beach development? 31
A word about storms and hurricanes 32
Hurricane probability and rank 34
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>What to worry about</td>
<td>58</td>
</tr>
<tr>
<td>Condominiums: friend or foe</td>
<td>60</td>
</tr>
<tr>
<td>Finger canals: waterfronts for all</td>
<td>62</td>
</tr>
<tr>
<td>The safety classification—quantifying the subjective</td>
<td>64</td>
</tr>
<tr>
<td>Nassau County</td>
<td>66</td>
</tr>
<tr>
<td>Duval County</td>
<td>67</td>
</tr>
<tr>
<td>St. Johns County</td>
<td>75</td>
</tr>
<tr>
<td>Flagler County</td>
<td>80</td>
</tr>
<tr>
<td>Volusia County</td>
<td>80</td>
</tr>
<tr>
<td>Brevard County</td>
<td>93</td>
</tr>
<tr>
<td>Indian River County</td>
<td>107</td>
</tr>
<tr>
<td>St. Lucie County</td>
<td>111</td>
</tr>
<tr>
<td>Martin County</td>
<td>115</td>
</tr>
<tr>
<td>Palm Beach County</td>
<td>121</td>
</tr>
<tr>
<td>Broward County</td>
<td>133</td>
</tr>
<tr>
<td>Dade County</td>
<td>139</td>
</tr>
<tr>
<td>Monroe/Florida Keys</td>
<td>149</td>
</tr>
<tr>
<td>5. The coast, land use, and the law</td>
<td>156</td>
</tr>
<tr>
<td>Coastal Barrier Resources Act of 1982</td>
<td>157</td>
</tr>
<tr>
<td>National Flood Insurance Program (NFIP)</td>
<td>158</td>
</tr>
<tr>
<td>Hurricane evacuation</td>
<td>163</td>
</tr>
<tr>
<td>The Florida Coastal Management Program (FCMP)</td>
<td>163</td>
</tr>
<tr>
<td>Hazard mitigation</td>
<td>164</td>
</tr>
<tr>
<td>Florida's Save Our Coast Program</td>
<td>165</td>
</tr>
<tr>
<td>Development of regional impacts</td>
<td>165</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water pollution control and water supply</td>
<td>166</td>
</tr>
<tr>
<td>On-site individual sewage disposal facilities</td>
<td>167</td>
</tr>
<tr>
<td>Dredging and filling</td>
<td>168</td>
</tr>
<tr>
<td>Local government comprehensive plans</td>
<td>169</td>
</tr>
<tr>
<td>Coastal construction permits</td>
<td>169</td>
</tr>
<tr>
<td>Building codes</td>
<td>171</td>
</tr>
<tr>
<td>Mobile home regulations</td>
<td>172</td>
</tr>
<tr>
<td>Prefabricated structure regulation</td>
<td>173</td>
</tr>
<tr>
<td>Historic and archeologic sites</td>
<td>173</td>
</tr>
<tr>
<td>Endangered fish and wildlife species</td>
<td>173</td>
</tr>
<tr>
<td>Florida's coastal future: more regulation</td>
<td>174</td>
</tr>
</tbody>
</table>

6. Building or buying a house near the beach | 177 |
| Coastal realty versus coastal reality | 177 |
| The structure: concept of balanced risk | 178 |
| Coastal forces: design requirements | 179 |
| Hurricane winds | 179 |
| Storm surge | 181 |
| Hurricane waves | 182 |
| Barometric pressure change | 182 |
| House selection | 182 |
| Keeping dry: pole or "stilt" houses | 184 |
| An existing house: what to look for, what to improve | 188 |
| Geographic location | 188 |
| How well built is the house? | 188 |
| What can be done to improve an existing house? | 195 |
Mobile homes: limiting their mobility 198
High-rise buildings: the urban shore 200
Modular-unit construction: prefabricating the urban shore 203
An unending game: only the players change 204

Appendix A. Hurricane checklist 205

Appendix B. A guide to local, state, and federal agencies involved in coastal development 209

Appendix C. Useful references 217

Appendix D. Field guide to the beaches of Dade County 230

Index 255
Figures and tables

Figures

1.1. Swimmers at Palm Beach 4
1.2. New home construction in New Smyrna Beach 5
1.3. 1983 construction in Wilbur-by-the-Sea 5
1.4. The 1917 version of the Breakers Hotel in Palm Beach 7
1.5. 1904 Daytona Beach 7
1.6. Big hurricanes of the 20th century 8
1.7. Index map to the East Florida coast 10
2.1. Origin of barrier islands 13
2.2. The history of the sea-level rise 15
2.3. Sand Key in Florida Bay 16
2.4. Barnacles illustrate sea-level rise 17
2.5. Relationship between sea-level rise and shoreline retreat 18
2.6. A ghost forest on the beach of Hutchinson Island 18
2.7. A barrier island response to sea-level rise 19
2.8. An example of island migration 20
2.9. Barrier island environments 24
2.10. The dynamic equilibrium of the beach 26
2.11. The response of a natural beach to a storm 27
2.12. Beach erosion at Vero Beach 30
2.13. Loss of sand at Key Biscayne 30
2.14. Hypothetical hurricane striking the east coast 33
3.1. Palm Beach in 1909 36
3.2. Palm Beach today 37
3.3. Beach replenishment, Lauderdale-by-the-Sea 38
3.4. Replenishment vs. natural beach 38
3.5. Removing coral from a replenished beach 39
3.6. Coral head fragments on Miami Beach 39
3.7. The "old" Miami Beach, 1972 40
3.8. The "new" Miami Beach, 1983 41
3.9. A nesting loggerhead turtle 43
3.10. A small groin 44
3.11. Jetties at Lake Worth Inlet 44
3.12. Sand bypass system, Lake Worth Inlet 45
3.13. Seawall in front of the Marco Polo Hotel, Sunny Isle 46
3.14. Revetment at the north end of Jupiter Island 47
3.15. Neptune Beach seawall and revetment 47
3.16. The Seawall Saga 48
3.17. Revetment at Ocean Ridge 48
3.18. Bulkheaded on Interoastal Waterway, Hallandale Beach 49
3.19. Eroding beach on Hutchinson Island 53
3.20. "New Jerseyized" beach, Monmouth Beach, N.J. 54
4.1. Ideal development of a hypothetical barrier island 57
4.2. Expected storm-surge levels for the Florida coast 58
4.3. Open drawbridge at Dania 59
4.4. Generalized erosion rates along the Florida shore 61
4.5. 38-story condo, Riviera Beach 61
4.6. The Septic Tank Saga 63
4.7. Site analysis: Amelia Island 68
4.8. Dune scarp near Amelia Island Plantation 70
4.9. Small revetment, American Beach 70
x Living with the East Florida shore

4.10. Cottages on Fernandina Beach 71
4.11. Condominium at Pelican Point 71
4.12. Site analysis: St. Johns River to Ponte Vedra Beach 72
4.13. Revetment, Jacksonville Beach 75
4.14. Narrow strip of land in southern St. Johns County 76
4.15. Seawall reinforcement, St. Augustine Beach 79
4.16. Site analysis: Micklers Landing and vicinity 82
4.17. Site analysis: South Ponte Vedra Beach to St. Augustine Inlet 84
4.18. Site analysis: St. Augustine Inlet to Matanzas Inlet 86
4.19. Site analysis: Summer Haven to Marineland 88
4.20. Site analysis: Flagler Beach 90
4.21. Primary dune removal, Wilbur-by-the-Sea 92
4.22. Homes set-back, Ormond-by-the-Sea 92
4.23. New home in New Smyrna Beach 93
4.24. Condominium, Daytona Beach 94
4.25. Site analysis: Ormond Beach 96
4.26. Site analysis: Daytona Beach to Ponce de Leon Inlet 98
4.27. Site analysis: New Smyrna Beach 100
4.28. Condominium district, Cocoa Beach 102
4.29. Site analysis: Cape Canaveral to South Cocoa Beach 102
4.30. Site analysis: Patrick Air Force Base to Melbourne Beach 104
4.31. Site analysis: Melbourne Beach to Sebastian Inlet 108
4.32. Eroded beach at Patrick AFB 110
4.33. Unusual seawall at Vero Beach 111
4.34. Site analysis: Sebastian Inlet to Wabasso Beach 112
4.35. Site analysis: Vero Beach to Fort Pierce Inlet 116
4.36. Site analysis: Fort Pierce Inlet to a nuclear power plant 118
4.37. Limestone outcrop, House of Refuge, Hutchinson Island 120
4.38. Beach replenishment, 1983, Hobe Sound 121
4.39. Home on Jupiter Island 121
4.40. Site analysis: Waveland to St. Lucie Inlet 122
4.41. Site analysis: Jupiter Island to Jupiter Inlet Colony 126
4.42. Site analysis: Jupiter Inlet to Palm Beach Shores 128
4.43. Site analysis: Palm Beach Shores to South Lake Worth Inlet 130
4.44. Site analysis: Ocean Ridge to Boca Raton Inlet 134
4.45. Too-close-to-the-beach development 136
4.46. Shorefront condos, Boca Raton 136
4.47. Replenished beach at Hollywood Beach 137
4.48. Site analysis: Oceanview to Hillsboro Inlet 138
4.49. Site analysis: Pompano Beach to Harbor Heights 140
4.50. Site analysis: Dania to Bakers Haulover Cut 142
4.51. Sunny Isles beach 144
4.52. New boardwalk on Miami Beach 144
4.53. Miami Beach after 1969 storm 145
4.54. Site analysis: Miami Beach 146
4.55. Site analysis: Fisher Island through Key Biscayne 148
4.56. Florida Keys index map 150
4.57. Generalized cross section across the Florida Keys 152
4.58. Repairing the old Florida Keys Highway after Hurricane Donna, 1960 154

6.1. Forces to be reckoned with at the shoreline 180
6.2. Modes of failure and how to deal with them 183
6.3. Shallow and deep supports for poles and posts 184
6.4. Pole house with poles extending to the roof 185
6.5. Framing system for an elevated house 186
6.6. Tying floors to poles 187
6.7. Foundation anchorage 189
6.8. Stud-to-floor, plate-to-floor framing methods 190
List of figures and tables xi

6.9. Roof-to-wall connections 190
6.10. Where to strengthen a house 192
6.11. Some rules in selecting or designing a house 194
6.12. Reinforced tie beam (bond beam) for concrete block walls 195
6.13. Tiedowns for mobile homes 197
6.14. Hardware for mobile home tiedowns 198
D-1. Map of the Miami area and coastal barrier islands 231
D-2. Aerial photographs of Cape Florida in 1945, 1951, and 1972 234
D-3. Cape Florida Lighthouse 236
D-4. Seawall of the Key Biscayne Hotel during a winter storm in 1982 238
D-5. Beach at Sonesta Beach Hotel during a winter storm 239
D-6. Shoreline changes of southern Miami Beach, Fisher Island, and northern Virginia Key 243
D-7. Maps showing the loss of seagrass seaward of the beach on Virginia Key 244
D-8. Oblique aerial from south Miami Beach to part of Key Biscayne in 1972 246
D-9. Oblique aerial view north from the south end of Miami Beach in 1978 247
D-10. Oblique aerial view north along Miami Beach in May 1980 248
D-11. Oblique aerial photograph of Bakers Haulover Cut following the 1926 hurricane 250
D-12. Oblique aerial photograph of Bakers Haulover Cut in August 1935 253

Tables

2.1. The Saffir/Simpson Hurricane Scale 35
4.1. Worst probable storm tide ranges by county 59
4.2. Evacuation requirements for various coastal areas 60
4.3 Risk classification categories for various eastern Florida counties 65
5.1 East Florida's barrier islands affected by the Coastal Barrier Resources Act 158
5.2. Number and value of flood insurance policies in coastal counties of Florida 160
6.1. Tiedown anchorage requirements 199
Foreword

During the 1920s, that anomalous period of American history when consumption of alcohol was forbidden by law, a great deal of illicit booze entered the country across the beaches of Florida. Prosperous Palm Beach was a community with a great thirst for illegal liquids, and as a consequence there were frequent flurries of late-night clandestine activity on local beaches. Young John Rybovich, later to become famous as the builder of the country’s premier yachts, made the magnificent sum of $15 per night by giving a helping hand. Rybovich and other young men of the island carried burlap bag after burlap bag of whiskey and beer from small boats bobbing in the surf, across the beach, through a tunnel under the road, and up to the beautiful mansion whose owner was conveniently absent. There cars and limousines waited to speed through the night and deliver their precious loads to thirsty customers.

The task of hauling booze across the beach was hard work. The beach was a lot wider in those days than it is now. Today, in many stretches of Palm Beach, the crates of booze could probably be transferred almost directly from a boat to a car parked on a road atop a seawall or revetment. Like many stretches of South Florida shoreline, the beaches of Palm Beach are a mere shadow of what they once were. They have disappeared for two reasons: buildings were built too close to the beach, and the eroding shoreline caught up with the houses. Beach erosion, which is caused by a variety of natural processes including a rise in sea level, is affecting all of Florida. Twenty-story condominiums, unheard of in John Rybovich’s youth, are hugging the shoreline from Jacksonville Beach to Miami Beach, and more and more beaches are getting narrower and narrower.

Still, there are many miles of East Florida shoreline where beaches are broad and beautiful and the vista of the sea is unencumbered by seawalls and groins. The beautiful beaches are a primary reason for Florida’s unprecedented growth and prosperity. Today, beach-front property is at a premium in the state.

But the rush to the Florida shore has created problems, the most important of which is a real danger to the inhabitants. Most of Florida’s beach-front property lies on thin, narrow strips of sand called barrier islands. These islands are low in elevation and are subject to flooding during storms and hurricanes. Some of the construction of buildings is poor, adding to the hazards facing homeowners, most of whom come from other parts of the country with little awareness of the hazards of beaches.

Those who live on Florida barrier islands and those who live next to beaches should understand how these dynamic systems work. This is important for both their physical and economic well-being. More than one transplanted Floridian has plunked down $150,000 for a beautiful condominium with a sea view only to find that in order to keep the building from becoming part of the view,
a lot more money must be spent to build and repair seawalls or to
pump up new beaches by dredging sand from offshore.

Lots of other surprises may await the unwary property owner
along Florida's shoreline, and one important purpose of this book
is to provide a good basis for where and what to buy and not buy.

As with all things in life, there is a right way and a wrong way.
The right way of living near the beach is to live with the forces of
nature rather than to confront them. The right way is to learn
respect for the big storms that will inevitably strike the shoreline
and to build homes and condominiums that will minimize the
hazards if one must ride out the storm. The right way is to clearly
understand the escape routes from an island. Most important of
all, the right way is citizen support for a strong local and state
coastal zone management program that will ensure that the beau-
tiful beaches of Florida will still be around for our children and
grandchildren to enjoy.

In this book we sometimes may seem to be critical of the efforts
of engineers, developers, and state officials in their role in the
development of the East Florida shoreline. But we fully recognize
that usually they are simply carrying out the dictates of a public
that is ever-anxious to get a better view of the sea. During the
last couple of decades, however, coastal scientists and engineers
have made great advances in understanding the nearshore oceanog-
aphic environment. The time has come when developers can no
longer say, "How were we to know?"

This book is one of a multivolume series called the "Living
with the Shore" series. Eventually there will be a book for each
coastal state as well as for Lake Erie and Lake Michigan. All
will be published by Duke University Press. We also have pub-
lished an "umbrella" volume entitled Coastal Design through Van
Nostrand Reinhold (1983, $25.50). The Living with the Shore
series emphasizes, state by state, very detailed site-safety analyses
of the American shoreline. Coastal Design is a generalized volume
intended to be applicable for all coastal areas, with emphasis on
principles of safe construction for near-the-shore areas. The pru-
dent coastal dweller will own both Coastal Design and the in-
dividual state volume.

A word about the authors: Orrin Pilkey, Jr., is a James B.
Duke Professor of geology at Duke University. Larry J. Doyle is
a professor of marine science at the University of South Florida.
Dinesh C. Sharma is an environmental resources consultant in
Fort Myers, Florida. Harold R. Wanless (author of the field trip
guide) is a professor of geology at the University of Miami's
Rosentiel School of Marine and Atmospheric Sciences. William J.
Neal is a professor of geology at Grand Valley State Colleges,
Michigan. Orrin H. Pilkey, Sr., is a retired civil engineer residing
in Charlottesville, Virginia. And Barbara Gruver is a geologist/
technician/draftsperson from Durham, North Carolina.

A lot of people have helped us produce this book. Larry Doyle
was supported by the Florida Sea Grant College Program. This is
Sea Grant Report #64. The Florida Department of Community
Affairs, through a grant to coauthor Dinesh Sharma, provided
funds to cover some research and printing costs. We also would
like to extend special thanks to Dr. Asish Mehta and Dr. T. Y.
Chia of the Coastal Engineering and Oceanographical Engineering Department at the University of Florida for providing a great deal of information for the compilation of the hazard profiles of individual counties. Lucile Lehman at the coastal engineering archives secured several hundred reports and documents during our research, and the Jacksonville District Headquarters of the Corps of Engineers was very helpful in providing a number of hard-to-get reports. Various county and regional planners provided copies of technical reports and ordinances for our review and research.

The overall coastal book project is an outgrowth of initial support from the National Oceanic and Atmospheric Administration through the Office of Coastal Zone Management. The project was administered through the North Carolina Sea Grant Program. Most recently we have been generously supported by the Federal Emergency Management Agency (FEMA). The FEMA support has enabled us to expand the book into a nationwide series including Lake Erie and Lake Michigan. Without the FEMA support, the series would have long since ground to a halt. The technical conclusions presented herein are those of the authors and do not necessarily represent those of the supporting agencies.

We owe a debt of gratitude to many individuals for support, ideas, encouragement, and information. Doris Schreider has helped us in many ways as Jill-of-all-trades over a span of more than a decade and a dozen books. Doris, along with Ed Harrison, compiled the index for this volume. The original idea for our first coastal book (How to Live with an Island, 1972) was that of Pete Chenery, then director of the North Carolina Science and Technology Research Center. Richard Foster of the Federal Coastal Zone Management Agency supported the book project at a critical juncture. Richard Pough of the Natural Area Council has been a mainstay in our fund-raising efforts. Myrna Jackson of the Duke Development Office has been most helpful in our search for support.

Mike Robinson, Jane Bullock, and Doug Lash of the Federal Emergency Management Agency have worked hard to help us chart a course through the shifting channels of the federal government. Richard Krimm, Peter Gibson, Dennis Carroll, Jim Collins, Jet Battley, Melita Rodeck, Chris Makris, and many others opened doors, furnished maps and charts, and in many other ways helped us through the Washington maze.

We also received a lot of help from Tallahassee officiadam. We would like to particularly note Jorge Southworth of the Department of Commerce and James Stoutamire of the Department of Environmental Regulation. Along the way we received help and encouragement from many of our fellow geologists. We particularly wish to mention our gratitude to Charles Finkle.