Artificial Reef Research

DIVER'S HANDBOOK

TP - 63

FLORIDA SEA GRANT COLLEGE PROGRAM
research, extension, and education for a better coastal environment
This handbook is dedicated to Edward A. Kalakauskis, a tireless reef research diver and sports fisherman "volunteer", who has been the common thread that helped make all this possible.

It is further dedicated to the memory of three "Artificial Reef Pioneers" whose work will long benefit fisherman and divers off the Northeast Florida coast:

Linden Heston - Jacksonville Offshore Sport Fishing Club

Richard "Dick" Longo - Daytona Beach Sport SCUBA Diver

Col. "C.M." McCormick - Ancient City Gamefish Association
St. Augustine, FL
This handbook is dedicated to Edward A. Kalakauskis, a tireless reef research diver and sports fisherman "volunteer", who has been the common thread that helped make all this possible.

It is further dedicated to the memory of three "Artificial Reef Pioneers" whose work will long benefit fisherman and divers off the Northeast Florida coast:

Linden Heston - Jacksonville Offshore Sport Fishing Club

Richard "Dick" Longo - Daytona Beach Sport SCUBA Diver

Col. "C.M." McCormick - Ancient City Gamefish Association
St. Augustine, FL
Artificial Reef Research

Diver's Handbook

Principal Editor

Joseph G. Halusky
Florida Sea Grant Extension Agent
Marine Education Center at Marineland
St. Augustine, Florida

Florida Sea Grant College Program
PO Box 110409
University of Florida
Gainesville, FL 32611-0409
Technical Paper TP-63
$5.00
List of Authors............. XI
Preface............. XIII

SECTION ONE

1. Introduction to Artificial Reef Research Diving Theory and Practice, Joseph G. Halusky
Scientific Diving and Diving Technology............. 1
 Scientific Diving Safety
 Scientific Diving Limitations
 Leadership and Scientific Diving
Scientific Diving Tasks & Data Collection............. 3
 Generalized Tasks of Diving Scientists
 Collecting Data
 Raw and Reduced Data
 Data Collecting & Preservation Guidelines
Summary............. 4
Artificial Reef Research Diver's Basic Concepts Summary............. 4

2. The Science and Technology of Artificial Reefs, Robert L. Jenkins
Science: A Definition............. 5
Scientific Research and Technology............. 6
Artificial Reef Research............. 7
The Scientific Method or Process............. 7
 Deductive Method
 Inductive Method
Data and Its Successful Accumulation............. 8
 Data Gathering Methods
 Quality of Data
 Measurements
 Accuracy and Precision
 Observations
 Time and Data
Interpretation and Organization............. 12
Role of Research Diver............. 13
Summary............. 13
References............. 13

3. Some Basic Considerations of Underwater Scientific Photography, Joseph G. Halusky
Basic Components of a Documentary Photo............. 15
 Key Elements of a Scientific Photograph
4. Oceanographic Data Collection and Reef Mapping, Christopher Jones

4.1 Reef Stability

- Settlement and Siltation
- Collapse and Scattering
- Disintegration

4.2 Oceanographic Data

- Currents
- Surface Waves
- Water Temperature
- Salinity
- Transparency/Turbidity
- Dissolved Oxygen
- Bottom Sediments
- Sediment Correlation

4.3 Mapping

- Establishing Control Points
- Locating Objects on the Bottom

5. Site Selection and Evaluation by Divers, Heyward Mathews

5.1 Some general Considerations for Reef Sites

- Role of Divers in Site Planning
- Preliminary Surface Survey
- Underwater Site Survey
- Biological Survey Report
- Post-Deployment Survey

6. Collecting Biological Data: Benthic and Planktonic Plants and Animals, Quinton White

6.1 Why Sample Benthic and Planktonic Organisms?

6.2 The Difficulties of Sampling Benthic and Planktonic Organisms

6.3 Identification of Plants and Encrusting Organisms
Identification of Plants and Encrusting Organisms 34
Planning and Preparation for Sampling 34
 Standardize Everything
 How Big is a Sample?
 Photographing
 Preserving
 How to Collect Samples
 Materials and Methods
 Identifying

References 36

7. Sampling and Studying Fish on Artificial Reefs, Stephen Bortone & James Bohnsack
 Introduction to Fish 39
 Reasons and Objectives for Studying Artificial Reef Fish 39
 Problems Associated with Fish on Artificial Reefs 40
 Collecting Data on Artificial Reefs 41
 Physical Environment
 Fish and Fauna Data
 Fish Collection 42
 Specimen Preservation 43
 Species Identification 44
 Importance of Field Notes 45
 Sampling Methods
 Moving Transect Sample
 Fixed Point Sampling
 Fish Survey Data Types 47
 Species List
 Qualitative Species Abundance
 Relative Species Abundance
 Absolute Abundance Data
 Data Analysis 49
 Graphic Analysis
 Prediction and Trends
 Species Relationships
 Summary 51
 References 51

8. Techniques: Identifying Economic Benefits of Artificial Reef Habitat,
Walter Milon & Ronald Schmeid
The Basis for Economic Benefits 53
User Day Value Methods 54
 Comparative Valuation Method
 Travel Cost Method
 Contingent Valuation Method
 Survey Methods

Summary 56
References 57

9. Disseminating Information on Reef Research Activities, Thomas M. Leahy

How to Use Channels of Communication 59

Personal Channels 59
 Person-to-person on a one-to-one basis
 Person to person contact at group meetings
 Presenting the Information
 Use of Slides

Newsletters 60
 Writing the Newsletter
 Packaging the Newsletter
 Distribution the Newsletter

Mass Media Channels 61
 Newspapers
 Using the Newspaper
 Preparing the Press Release

Magazines 62
 Writing the Magazine Article

Radio 63
 Using Radio
 Being Interviewed
 Your Own Program
 Writing for Radio

Television 64
 Preparing a Public Service Announcement (PSA)
 Using Commercial Television Stations
 Using the Local Cable TV Channel
 Appearing On Television

Summing Up 66
Suggested Reading 66

10. Training Volunteer Divers to Research and Document Artificial Reefs for Their Community, Joseph G. Halusky
12. Establishing an Artificial Reef Data Archives for the Community,
Joseph G. Halusky & Shawn Brayton

Artificial Reef Data Archives 79
The Archivist

The Archives Components 80
Library
Historic Records
Reef Site Data and Project Files
Reference Collection Documentation
Reef Research Personnel & Training Records
Research Equipment Records and Manuals

Using the Archives and Specimen Collection 83
Who owns the Data and who should have access to it?
Controlling and Retrieving the Reef Research Information

Summary 83
References 83
Useful Organizations 84

13. Guidelines for Organizing a Volunteer Reef Research Organization,
Scott R. Braunsroth & Dennis Short

Initial Considerations 85
Need
Organizational Structure
The Executive Board
The Committees
Going Public

Development of the Constitution 87
Naming the Organization
The Charter
Duties of Officers and Committees
Funding and Incorporation

Academic Liaison 90
Volunteers and Scientists as Partners
SECTION TWO

Underwater Research Methods Summaries & Equipment Descriptions

Underwater Research Method Summary Example Sheet.............. 90A
Excavation by Portable Couple Jet Blower.............. 91
Fish Assessment - Cintransect......................... 92
Fish Assessment - Point Count......................... 93
Fish Assessment - Rapid Visual Technique.............. 94
Fish Assessment - Species/Time Random Count.......... 95
Fish Assessment - Transect......................... 97
Mapping - Circular Strip Map.............. 99
Pop Warner Reef Map......................... 100A
Mapping - Small Area Survey Grids.............. 101
Position Finding......................... 102
Sediment - Bioturbation Rate.............. 104
Sediment - Sand Transport.............. 105
Sediment - Settlement Rate.............. 106
Stone Crab Reef Module - Current.............. 107

Appendices.............. 109

Appendix A.............. 109
Appendix B.............. 111
Appendix C.............. 119
Appendix D.............. 123
Appendix E.............. 125
Appendix F.............. 131
Appendix G.............. 137
Appendix H.............. 147
Appendix I.............. 157
Appendix J.............. 161
Appendix K.............. 163
Appendix L.............. 165
Appendix M.............. 167
Appendix N.............. 169
Appendix O.............. 171
Appendix P.............. 173
Appendix Q.............. 175
Appendix R.............. 187
Appendix S.............. 189
Appendix T.............. 191
Appendix U.............. 195
LIST OF AUTHORS

James Bohnsack
Southeast Fisheries Center
National Marine Fisheries Service
75 Virginia Beach Drive
Miami, FL 33149.

Steven A. Bortone
Biology Department
University of West Florida
Pensacola, FL 32514.

Scott R. Braunsroth
1424 Fruit Cove Rd. N.
Jacksonville, FL 32223.

Shawn Brayton
Archivist
Jacksonville Scubanauts Reef Research Team
10881 Great Southern Drive
Jacksonville, FL 32223.

Joseph G. Halusky
North East Florida Sea Grant Extension Agent
233 Marine Center Drive
St. Augustine, FL 32086.

Robert L. Jenkins
Director of Operations and Husbandry
National Aquarium in Baltimore
501 E. Pratt St.
Baltimore MD 21202.

Christopher P. Jones
Coastal Science and Engineering,
P.O. Box 8056
Columbia, SC 29202.

Gary Kirkland
1811 Indian Wood
Neptune Beach, FL 32233.

Thomas M. Leahy
Former Director
Florida Sea Grant Communications
and Publications
Editorial Dept.
University of Florida
Gainesville, FL 32611.

Heyward Mathews
Professor of Oceanography
St. Petersburg Jr. College
Clearwater Campus
2465 Drew St.
Clearwater, FL 33757.

J. Walter Milon,
Department of Food and Resource Economics
IFAS
University of Florida
Gainesville, FL 32611.

Ronald L. Schmied
National Marine Fisheries Service
9450 Koger Blvd.
St. Petersburg, FL 33702.

Dennis Short
Jacksonville Scubanauts Reef Research Team

Gregg R. Stanton
Research Diving Coordinator
Academic Diving Program
Florida State University
Rm. 10 Montgomery Bldg.
Tallahassee, FL 32306.

A. Quinton White
Department of Biology and Marine Science
Jacksonville University
Jacksonville, FL 32211.
Preface

Artificial reef construction in Florida is largely a result of volunteer efforts. Historically, volunteer reef builders have had difficulty evaluating the success of their efforts since divers were usually not called upon to observe the reef material after placement. If divers were available, they generally had little or no training in objective underwater data gathering and documentation methods. Properly trained sport divers can assist reef builders by providing feedback information and documentation. Volunteer reef research divers can provide a valuable public service, not otherwise available from state or academic institutions, by establishing their own reef research, monitoring and documentation projects and storing this information in a publicly accessible reef data archive.

The purpose of this Artificial Reef Research Divers Handbook is to provide background information and guidelines for sport divers:

1) to gather information about their community’s artificial reefs;
2) to document and store this information in a way that can be retrieved and understood by the reef builders, government agencies, the research community, other interested volunteer organizations and the public;
3) to communicate their observations in a credible fashion.

The handbook is organized into two primary sections. Section I consists of thirteen chapters which discuss the theoretical and practical aspects of physical and biological data collection underwater, project planning, training, public relations, setting up an archive and organizational structure of a reef research team. Section II is what might be called the "recipe" section or "Underwater Research Methods Summaries". It, like any recipe book, provides step by step guidelines for various underwater data gathering methods.

Scientific Diving, to gather information (Data) underwater is NOT merely jumping in the ocean, looking around and reporting back to the surface what the diver "thinks" is going on "down there". It is the establishment and use of SYSTEMATIC and STANDARDIZED procedures for gathering OBJECTIVE information which is added to the DIVE LOG and the data ARCHIVE. It may include the collection and preservation of specimens for a REFERENCE COLLECTION, as well as the making of detailed REEF SCATTER MAPS and systematic MARINE ORGANISM POPULATION SURVEYS. It may include MONITORING, through documented photographs, video surveys and systematic photo transect surveys over long periods of time to capture changes which otherwise might remain unobserved. LEADERSHIP, PLANNING and COMMUNICATIONS is at the heart of a successful underwater research program, whether it is done by professional scientific divers or volunteers.

This handbook will not make the reader a research scientist! Professional academic degrees and training are needed to conduct credible marine science. Becoming a marine scientist requires the completion of degree work at a college and university. This cannot be achieved in a single extension course, handbook or dive shop training program.

This is NOT a handbook on diving technology. No attempt is made to discuss methods of diving, diving theory, new life support equipment or technique. There is no discussion about rescue or emergency procedures, except to say that such procedures should be established on any dive. There are many "Dive Manuals" available to fulfill these needs.

There is considerable discussion about safety procedures which might be different from those practiced in sport diving, and APPENDIX A is a reference to the Scientific Dive Standards adopted by the American Academy of Underwater Sciences. Any research diving activity should seriously consider the adoption of these standards to their underwater research activities.

There is discussion about the need for the scientific dive teams to establish organizational procedures to safely conduct a research dive operation and insure the data is preserved. Chapter 11 on "Project Management" provides a thorough discussion about how to organize a research dive expedition, to include logistics and descriptions of specific job assignments. Chapter 12 discusses how to establish an "Archives and Reference Collection" to preserve the data and Chapter 13 discusses how to organize a "Reef Research Team."

The underwater research methods included should not be construed as the "only" or even the "best" method for gathering the type of data discussed. Good science methodology depends on the nature of the question that is being asked, the technology available to get the data and the situation it is to be collected in. Often, the questions will change as new information is made available; as the technology changes and the situation in the field changes. The intent of this "Section II - Underwater Research Methods Section" is merely to provide ideas as a basis for deciding what data gathering strategies might be used in a reef research project. Each "Method" should be adjusted to meet the users situation.

Section II should continue to grow. I encourage the reader(s) to develop, field test and write their own Underwater Research Methods Summaries and share them with others through the Florida Sea Grant Extension Program. This can be accomplished by copying the blank Underwater Research Methods Summary form, found at
the beginning of Section II, filling it in and mailing it to:

Florida Sea Grant Extension Program
Building 803
University of Florida,
Gainesville, FL 32611.

The Appendix of this handbook is a collection of supporting materials that should help the readers to start their own reef research program. It, like the "Methods Summaries", should be used as a guide only, and modified to suit the users needs.

The "Artificial Reef Research Divers Handbook" should help volunteers to take the first step in the scientific method - MAKE AN OBSERVATION about their communities' artificial reefs and DOCUMENT IT. It is specific in that it focuses on underwater data collection methods with basic SCUBA equipment normally used by sport divers. It uses simplified methodology found in a number of science disciplines. It is unique in that it concentrates on teaching volunteers how to design, lead and store information for THEIR OWN artificial reef documentation projects. Its practical end is aimed at improved reef monitoring and construction programs through volunteerism.

The Florida Sea Grant Extension Programs, Artificial Reef Research Divers Training Program and this Handbook, would not be possible were it not for the many volunteer scientists, sport divers, fishermen, citizens and agency people who willingly gave their time and energy to this effort. The workshops held since 1980 was dependent on those individuals who freely gave their weekends, boat time and equipment in support of this activity. To all of you volunteers who helped, too numerous to list here, we offer this "Thank You!" We owe a special thanks to the original students who graduated from this training, for in many respects, you were the "Guinea Pigs" in this grand experiment. The program would have failed without your patience and dedicated spirit.

In any program, a few individuals always stand out for their extra dedication to the project. Foremost, is Ed Kalsteikis, to whom this Handbook is dedicated. Ed, a graduate of the first workshop in Daytona, has continued to be deeply involved with all the training programs since, and is the connecting strand between the reef builders and reef research divers. He continues to freely give volunteer time to all reef activities throughout the North East Florida region, serving as an inspiration to all.

I would also like to recognize and thank Dr. Quinton White, Jacksonville University, who, without compensation, freely gave his time and talents to this program, from the very beginning. He has kept a sincere interest in the projects of its graduates and serves as their academic advisor. He has provided additional extension training in Invertebrate Biology for the Jacksonville Scubanauts Research Team.

Others who deserve special thanks for supporting the training and keeping the program growing include: Don Serbousek, Thiele Wetzel, Dan O'Brien, Pete Hiebrechts, H.C. "Hap" Jones, Dick Starke, Halifax Sport Fishing Club and Ormond Anchor Chasers Dive Club from the Daytona Beach area; Jim Netherton, Larry Mahn, George Miller, Rick Holmblad, Gene Burns, Kevin McElroy, Bill Kerr, Ancient City Gamefish Association, N.E. Florida Martin Association, Camachee Cove Marina, Sea Hunt Enterprises Dive Shop from St. Augustine; and Aquifer Dive center of Jacksonville. Some individuals willingly provided leadership during the early stages of this program and include: Bob & Joy Engel, Dennis & Wendy Short, Larry Tipping, Don Landis, John Hammond, Marilyn Halusky, Jim Powell, Beth Stawbridge, Mark & Kim Ulman, Gideon Carpenter, Gary Kirkland, Jacksonville Offshore Sports Fishing Club, Jacksonville Scubanauts Dive Club, Aquifer Dive Center from the Jacksonville area; Leon Duprene from Brevard County and Mike McAllister from Nassau County. I apologize for any omissions from this list and regret that I cannot list all the volunteers who have helped make this program the success that it is. To all I offer my warmest "THANKS"!

A special thanks goes to Ms. Ginger Layton Popel and Ms. Janice Fiockins, for their tireless and patient labors in assembling this manuscript.

There are a few "Artificial Reef Pioneers" who are no longer with us. They each deserve special recognition for much of their thinking is found in this handbook. Perhaps, their pioneering work will live on through this publication. We will never forget them. They include:

Dick Longo
Assistant Divermaster
1980 Daytona Beach Artificial Reef
Research Diver Training.

Col. C. M. McCormick
President
Ancient City Gamefish Association
past Chairman of the Reef Committee.

Linden Heston
Jacksonville Offshore Sportfishing Club
Reef Committee and one of the early reef
builders in Jacksonville.

We, the authors, wish continued progress and success for all who are involved and concerned with the wise management of our marine habitat resources.

Joe G. Halusky
September, 1991