ULTRAVIOLET RADIATION

AND CORAL REEFS

EDITED BY:

D. GULKO AND P. L. JOKIEL

HAWAI'I INSTITUTE OF MARINE BIOLOGY

UNIVERSITY OF HAWAI'I

UNIVERSITY OF HAWAI'I
HAWAI'I INSTITUTE OF MARINE BIOLOGY

HONOLULU, HAWAI'I TECHNICAL REPORT NO. 41 DEC. 1995

SEA GRANT PUBLICATION UNIHI-SEAGRANT-CR-95-03
ULTRAVIOLET RADIATION

AND CORAL REEFS

EDITED BY:

D. GULKO AND P. L. JOKIEL

HAWAII INSTITUTE OF MARINE BIOLOGY

UNIVERSITY OF HAWAII

UNIVERSITY OF HAWAI‘I
School of Ocean and Earth Science and Technology
HAWAI‘I INSTITUTE OF MARINE BIOLOGY

TECHNICAL REPORT NO. 41
DEC. 1995

SEA GRANT PUBLICATION UNIHI-SEAGRANT-CR-95-03
Acknowledgments

The editors would like to gratefully acknowledge the assistance of Dr. Roy N. Bidwell in the final editing and preparation of this volume. Additional assistance was provided by Dr. Michael P. Lesser and Ms. Jacqueline Blanck.

This book was printed on acid-free 70# paper by Professional Image, Inc., Honolulu, Hawai'i.

This publication is funded in part by grants from the Edwin W. Pauley Foundation, the United States-Israel Binational Science Foundation and a grant/cooperative agreement from the National Oceanic and Atmospheric Administration, project #E/ET-19 which is sponsored by the University of Hawaii Sea Grant College Program, SOEST, under Institutional Grant No. NA36RG0507 from NOAA Office of Sea Grant, Department of Commerce. The view expressed herein are those of the authors and do not necessarily reflect the views of NOAA or any of its subagencies.

UNIHI-SEAGRANT-CR-95-03.
Table of Contents

List of Workshop & Summer Program Participants .. i

An Introduction to the study of UV on coral reefs
Paul Jokiel .. v

Introduction:
Plenary Address: Ultraviolet light and the origin of life
David Mauzerall .. 1

Oh no, not another workshop:
A summary of previous UV workshops
Michael P. Lesser .. 13

General overview of instrumentation, experimental methods,
and attenuation of UV radiation into natural waters
Michael P. Lesser .. 15

Introduction to materials and methods commonly
used by participants in the 1994 HIMB
Summer Program on ‘UV Radiation and Coral Reefs’
Dave Guiko, Michael P. Lesser, and Michael Ondrusek .. 19

An Introduction to the UV environment of Kane‘ohe Bay, Hawai‘i
Dave Guiko .. 25

Attenuation in Kane‘ohe Bay as Interpreted from PUV profiles
Karen W. Patterson .. 37

Plankton:
The influence of solar UV-B radiation on copepods in
the lagoon at Coconut Island, Hawai‘i
Hiroaki Saito and Satoru Taguchi ... 43

A biological weighting function for phytoplankton growth inhibition
Peter J. M. Peterson, Ray C. Smith, Karen W. Patterson, and Paul L. Jokiel 51

Physiological and biochemical effects of UV radiation on the marine
phytoplankton Nannochloropsis sp. and Dunaliella sp.
Barbara Butow and Tamer Fisher .. 61

Corals:
Horizontal and vertical distribution of MAAs in
Hawaiian corals: a depth profile and a survey
Ilisa Kuffner, Michael E. Ondrusek, and Michael Lesser ... 77

UV-absorbing compounds in the coral Pocillopora demicorina: effects
of light, water flow and ultraviolet radiation
Paul L. Jokiel, Michael P. Lesser, and Michael E. Ondrusek .. 87

Response of a Pacific stony coral to short-term exposure of ultraviolet
and visible light
Sarah K. Lewis ... 89

Bleaching and lipids in the Pacific coral Montipora verrucosa
Andrea G. Grotti-Everett ... 107
Uneven bleaching within a coral colony in response to differing levels of solar radiation
Andrea G. Grothol-Everati and lisa Kuffner .. 115

The metabolic response of Fungia scutaria to elevated temperatures under various UV radiation regimes
Sophia V. Holbauch .. 121

Preliminary report on the occurrence of mycosporine-like amino acids in the eggs of the Hawaiian scleractinian corals Montipora verrucosa and Fungia scutaria
David A. Krupp and Jacqueline Blanck .. 129

Effects of ultraviolet radiation on fertilization in the Hawaiian coral Fungia scutaria
Dave Guiko .. 135

The effect of UV on settlement of the planula larvae of Porites lobata
Andrew Baker ... 149

Zooxanthellae:
Ultraviolet radiation: helpful or harmful to zooxanthellae culture growth?
Scott R. Santos ... 165

Seaweeds:
Survey of mycosporine-like amino acids in macrophytes of Kane’ohe Bay
Anastazia T. Banaszak and Michael P. Lesser .. 171

Effects of ultraviolet radiation and nitrogen enrichment on growth in the coral reef chlorophytes Dictyosphaeria cavernosa and Dictyosphaeria versluyi.
Scott Lamed .. 181

Phototoxicity:
Phototoxicity in a coral reef flat community
Rita Peachey and Don Crosby .. 193

UV & Vision:
UV vision by marine animals: mainly questions
Nadev Shashar ... 201

Polarization vision as a mechanism for detection of transparent objects
Nadev Shashar, Loana Addessi, and Thomas W. Cronin 207

Designs for submersible Imaging polarimeters
Nadev Shashar, Thomas W. Cronin, George Johnson, and Lawrence B. Wolff 213

Ultraviolet Imagery
George Losey, Craig W. Hawryshyn, William N. McFarland, Ellis R. Lowe, Tom W. Cronin, and Diane Fiore 219
Conclusions:

Workshop roundtable discussion on “Directions in Marine UV Research”.....223

Appendices:

Appendix I: Course syllabus for the 1994 Edwin W. Pauley Summer Program in Marine Biology - “UV Radiation on Coral Reefs”.............229

Appendix II: Ultraviolet Radiation in Tropical Coastal Ecosystems

Workshop Schedule...231

Appendix III: UV Measurement Instrumentation Comparison Chart.............233

Subject Index...237
Participants:

1994 Edwin W. Pauley Summer Program
‘Ultraviolet Radiation and Coral Reefs’
Hawai‘i Institute of Marine Biology

Workshop on Measurement of Ultraviolet Radiation
In Tropical Coastal Ecosystems
Held at the East-West Center, University of Hawai‘i, August 3rd - 5th, 1994.

Addessl, Loana (Ms.)
Department of Oceanography
University of Hawai‘i at Manoa
Honolulu, HI 96744

Butow, Barbara (Ms.)
Lake Kinneret Limnological Lab.
POB 345
Einat
ISRAEL

Amrami, Dov (Mr.)
Department of Life Sciences
Bar-Ilan University 52900
Ramat-Gan
ISRAEL

Chadwick-Furman, Nanette (Dr.)
Interuniversity of Einat
H. Steinitz Marine Laboratory
P.O. Box 469
Einat
ISRAEL

Baker, Andrew (Mr.)
Marine Biology and Fisheries
University of Miami
4600 Rickenbacker Cswy
Miami, FL 33149

Cronin, Thomas (Dr.)
Dept. of Biological Sciences
Univ. of Maryland Baltimore Cnty.
5401 Wilkens Avenue
Baltimore, MD 21228-5398

Banaszek, Anna (Ms.)
Department of Biological Sci.
U.C.S.B
Santa Barbara, CA 93106

Crosby, Donald (Dr.)
Dept. of Env. Toxicology
U.C. Davis
Davis, CA 95616-8588

Bidwell, Roy N. (Dr.)
Dept. of Biological Sciences
Los Alamos College
Livermore, CA 94550

Dubinsky, Zvi (Dr.)
Dept. of Life Sciences
Bar-Ilan University 52900
Ramat-Gan
ISRAEL

Blanc, Jacqueline (Ms.)
Hawai‘i Institute of Marine Biology
P.O. Box 1348
Kane‘ohe, HI 96744

Fiore, Diane (Ms.)
Optics For Research
P.O. Box 82
Caldwell, NJ 07006
Fisher, Tamar (Ms.)
Dept. of Life Sciences
Bar-Ilan University 52900
Ramat-Gan
ISRAEL

Kinzia, Bob (Dr.)
Hawai‘i Institute of Marine Biology
University of Hawai‘i
P.O. Box 1348
Kane‘ohe, Hi 96744

Gitelson, Anatoly (Dr.)
J. Bau er Institute for Desert Research
Ben Gurion University of the Negev
Sede Boker Campus 84993
ISRAEL

Krupp, David (Dr.)
Hawai‘i Institute of Marine Biology
University of Hawai‘i
P.O. Box 1348
Kane‘ohe, Hi 96744

Grottoi-Everett, Andrea (Ms.)
Department of Biology
University of Houston
8282 Cambridge #1904
Houston, TX 77054

Kuffner, Lisa B. (Ms.)
Hawai‘i Institute of Marine Biology
University of Hawai‘i
P.O. Box 1348
Kane‘ohe, Hi 96744

Guks, David (Mr.)
Hawai‘i Institute of Marine Biology
University of Hawai‘i
P.O. Box 1348
Kane‘ohe, Hi 96744

Lamed, Scott (Mr.)
Dept. of Zoology
University of Hawai‘i
Hono ulu, Hi 96822

Hawryshyn, Craig (Dr.)
University of Victoria
P.O. Box 1700
Victoria, BC V8W 2Y2
CANADA

Lesser, Michael (Dr.)
Dept. of Zoology
Spalding Building
University of New Hampshire
Durham, NH 03824

Hohliach, Sophia (Ms.)
University of Calif, Santa Barbara
130 Arroyo Rd.
Santa Barbara, CA 93108

Lewis, Sarah (Ms.)
Institute of Ecology
University of Georgia
P.O. Box 2829
Athens, GA 30602-2202

Iluz, David (Mr.)
Department of Life Sciences
Zeev Bar-Ilan University 52900
Ramat-Gan
ISRAEL

Loew, Ellis (Dr.)
Dept. of Physiology
College of Vet. Medicine
Cornell University
Ithaca, New York 14853

Jokiel, Paul (Dr.)
Hawai‘i Institute of Marine Biology
University of Hawai‘i
P.O. Box 1348
Kane‘ohe, Hi 96744

Lesey, George (Dr.)
Hawai‘i Institute of Marine Biology
University of Hawai‘i
P.O. Box 1348
Kane‘ohe, Hi 96744
Mauzarak, David (Dr.)
The Rockefeller University
1230 York Avenue Box 293
New York, New York 10021

Santos, Scott (Mr.)
Dept. of Zoology
University of Hawai‘i
2538 The Mall
Honolulu, HI 96822

Morrow, John H. (Dr.)
Biospherical Instruments, Inc.
5340 Riley St.
San Diego, CA 92110-2621

Shashar, Nada (Mr.)
Dept. of Biological Sciences
Baltimore County Campus
Baltimore, Maryland 21228-5398

McFarland, William (Dr.)
Director, Philip K. Wrigley Marine Science
Center at Catalina
P.O. Box 398
Avalon, Calif. 90704

Stambler, Noga (Dr.)
Alfred-Wegener-Institute
Inst. for Polar & Marine Research
Postfach 120161.
Columbiastrasse, D-2855 Bremerhaven,
GERMANY

Ondrusek, Michael (Mr.)
Dept. of Oceanography
Marine Science Bldg. 607
University of Hawai‘i at Manoa
Honolulu, Hawai‘i 96822

Suttle, Curtis (Dr.)
University of Texas at Austin
Marine Science Institute
P.O. Box 1267
Port Aransas, TX 78373-1267

Patterson, Karen (Ms.)
Dept. of Geography
University of California
Santa Barbara, CA 93106
(Representing Ray Smith’s lab)

Taguchi, Satoru (Dr.)
Chief, Biological Ocean.
Nat. Fish. Research Inst.
Katsura-ko 116, Kushiro,E-Mail:
Hokkaido 085
JAPAN

Peachey, Rita (Ms.)
Dept. of Zoology
University of Hawai‘i
2538 The Mall
Honolulu, HI 96822

Yakobi, Yosef (Dr.)
The Yigal Allon Kinneret
Limnological Laboratory
Lake Kinneret Limnological Lab.
POB 345, Tiberias 14102
ISRAEL

Reaka-Kudla, Marjorie (Dr.)
Dept. of Zoology
University of Maryland
Colledge Park, MD 20742

* Also registered as a student in the 1994
Pauley Summer Program on Ultraviolet
Radiation and Coral Reefs; held at the
Hawai‘i Institute of Marine Biology June -

Saito, Hiroaki (Mr.)
Hokkaido Nat. Fish. Research
Katsura-ko 116, Kushiro
Hokkaido 085
JAPAN

" Served as an instructor for the 1994
Pauley Summer Program on Ultraviolet
Radiation and Coral Reefs; held at the
Hawai‘i Institute of Marine Biology June -
Introduction

Paul L. Jokiel
Hawaii Institute of Marine Biology
P. O. Box 1346
Kaneohe, HI 96744

It has been many years since solar ultraviolet radiation was clearly identified as an important ecological factor on coral reefs (Jokiel, 1980), so it seemed timely to organize a major multidisciplinary project designed to evaluate the state of the art, conduct research, train new researchers in the field and evaluate techniques and methods of measurement in common use today on coral reefs. Major funding for the research and educational function was granted by the Edwin W. Pauley Foundation for an advanced research and training program at the Hawai‘i Institute of Marine Biology (HIMB) entitled “Ultraviolet Radiation and Coral Reefs” that was held from June 15 to August 2, 1994. In addition, the University of Hawaii Sea Grant Program funded an international workshop entitled “Measurement of Ultraviolet Radiation in Tropical Nearshore Environments” that was held at the East-West Center (University of Hawai‘i, Honolulu, Hawai‘i) from August 3-5, 1994. The US-Israel Binational Science Foundation supplied additional funding for participants from Israel and supported the participation by Dr. Dave Mauzeral, our keynote speaker for the workshop.

This volume contains much of the information developed during the 1994 program. Additional research papers are still in preparation by some of the participants and will be forthcoming in various journals. A very important intangible outcome was the sharing of ideas, establishment of research links between various groups and the formulation of new research directions. One example of this was the design of an underwater video system capable of detecting visual patterns in the UV portion of the spectrum. Many fish and invertebrates have the ability to visually detect UV, so they must somehow use UV to obtain information about their environment. This totally new instrument will allow us to “see” as these fish and invertebrates “see” in the UV-range for the first time. The construction of the instrument designed during the 1994 program was recently funded by the US National Science Foundation. Although the instrument will be located at HIMB, it will be used by an international group of scientists including the workshop participants that contributed to its design.

The 1994 program addressed topics from the molecular to the ecosystem level. One can simply examine the following “Table of Contents” to gain appreciation for the wide range of UV topics covered by the participants. By the end of the program, there was a general consensus on the following major points:

- UV is an important environmental factor in shallow tropical ecosystems, influencing living systems at all levels of organization from molecular to community. The importance of UV should not be surprising, given the role of this factor in the origins and evolution of life as described in Dr. Mauzeral’s plenary address.

- Although the all-pervasive influence of UV can be shown by experimental treatments of “UV present” vs. “UV absent”, it is another matter to conduct experiments that evaluate the possible importance of future increases in UV resulting from anthropogenic ozone thinning. Major obstacles to progress in this area include: 1.) lack of data on spectral irradiance reaching the earth’s surface at low latitudes, 2.) lack of a reliable predictive model that can provide data on future increases in spectral irradiance, and 3.) lack of biological data on possible importance of such increases. An immense expenditure of research resources will be required to gain the needed information in these areas due to the technical difficulties encountered in measurement of UV, difficulties in simulating experimental regimes of increased UV and complexities in evaluating effects of a slight UV increase on an ecosystem.
• The chief obstacle to assessment of increased UV on shallow water tropical reef communities lies in their demonstrated complexity, susceptibility and adaptability to UV. Using the terms "susceptibility" and "adaptability" appears to be a paradox. On one hand, reef organisms are living at the highest levels of UV found in the oceans, and show remarkable ability to adapt to extremely high levels of UV. Can these organisms readily adapt to levels of UV that are even higher than presently encountered at the surface of the ocean? This is probable, but has yet to be demonstrated. The UV-blocking compounds in reef corals serve as a good example of a mechanism allowing corals to adapt to a wide range of UV environments at little metabolic cost. On the other hand, UV has been shown to influence most aspects of coral metabolism and impacts all stages in the life cycles of various organisms. In addition, interaction of UV with other physical factors (e.g. temperature-UV synergism's) or processes such as UV-photototoxicity can exacerbate the intensity of other environmental stresses acting on reefs, and in these cases UV produces more damage than anticipated. Every argument as to the sensitivity of reefs to UV damage seemingly can be met with a counter argument that adaptation or acclimation will return the reef to equilibrium.

• Participants in the 1994 program came to the conclusion that UV research must always be "question-driven". This attitude was most apparent in discussions of UV-measurement instrumentation. The group advocated use of appropriate measurement techniques for the question being asked, with due regard to cost effectiveness, rather than selection for standardized instrument. Many biological questions can be resolved using simple and inexpensive actinometric techniques or dosimeters. Some questions are best asked using Robertson-Barger sunburning units or similar units. Other questions, including the monitoring of existing and future trends in solar UV irradiance reaching the surface at low latitudes will require extremely sophisticated scanning spectroradiometric monitoring systems that could be prohibitive, given present research funding levels. Again, the participants argued that first one must ask a legitimate scientific question and then specify the UV measurement technique to be employed.

• It is clear that we have only scratched the surface of basic UV-related research topics. The first demonstration of UV-photototoxicity was conducted during the 1994 program (Peachey and Crosby, this volume). Our embarrassing small base of information on UV and coral reproduction was expanded by the studies of Gulko (this volume) and Baker (this volume). Scientists concerned with the emerging question of UV, polarization and vision in tropical marine animals point out the lack of information in this important area (Shashar, Shashar et al., this volume, Shashar et al., this volume, Losey et al., this volume). The first broad scale measures of UV attenuation in Kaneohe Bay were made during the program (Patterson, this volume). Numerous other studies in this report demonstrate the fertile research ground available for UV research in tropical marine systems, and a myriad number of research questions were raised by the participants (e.g. Discussion at Workshop Sessions, this volume).

• The group as a whole recognized the need for research centers in tropical reef areas that would be available to all. This recommendation is being implemented. We have secured an NSF grant to purchase the underwater UV video system mentioned earlier for use by the group of international scientists involved in this work. Further, NSF has provided funds to purchase a scanning underwater UV spectroradiometer for HIMB. The data base developed in Kaneohe Bay during the session will be invaluable to researchers using our facility. The University of Hawaii recently purchased all of Coconut Island (which includes housing to be used by visiting investigators) and is building a new $3.3 million dollar laboratory with a gift from the Edwin W. Pauley Foundation. Therefore, we are well on the way of meeting this recommendation by establishing this facility as a center for UV research.

LITERATURE CITED